• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis on the structure of standard Whittaker modules

Research Project

Project/Area Number 16K05071
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionAoyama Gakuin University

Principal Investigator

Taniguchi Kenji  青山学院大学, 理工学部, 教授 (20306492)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords標準 Whittaker 加群 / リー群の表現の組成列 / Whittaker 模型 / 確定特異点型偏微分方程式系の境界値問題 / Whittaker加群 / 主系列表現の組成列 / 標準 Whittaker (g,K)-加群 / リー群の表現論 / Whittaker模型
Outline of Final Research Achievements

In the representation theory of groups, it is one of the basic problems to define standard representations and determine the structure of them.
In this research, I worked on this problem about the standard Whittaker (g,K)- modules, which I had defined. The results are as follows.(1) The socle filtrations of the standard Whittaker (g, K)-modules of Sp(2,R) are completely determined. (2) In the case of split groups, I proved that these modules are stable under the translation functors and I determined the global characters of the standard Whittaker (g, K)-modules. I also tried to show the self duality conjecture, which is one of the main objects of this research. Though important observations are obtained, this conjecture is still unproved.

Academic Significance and Societal Importance of the Research Achievements

群や環の表現論において,標準的な表現を構成し,その構造解析を行うことは基本的かつ重要な問題である.本研究では,Whittaker 関数の空間という誘導表現から構成された標準 Whittaker (g,K)-加群に対して,この問題に取り組んだ.研究を続ける過程で,この加群はある圏における入射加群であることが認識され,この事実を使うことで,群が split の場合には,translation での安定性や大域指標の決定,即ち組成因子問題を解決することができた.当初は解析的な問題と思われていたが,全く異なる代数的な手法で研究が進展したことは興味深いと考えている.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2020 2019 2018 2017 Other

All Presentation (4 results) Remarks (1 results)

  • [Presentation] 緩増加な Whittaker 関数の空間の不変双一次形式について2020

    • Author(s)
      谷口 健二
    • Organizer
      2019年度表現論ワークショップ
    • Related Report
      2019 Annual Research Report
  • [Presentation] Whittaker加群上の不変双一次形式について2019

    • Author(s)
      谷口 健二
    • Organizer
      2018年度表現論ワークショップ
    • Related Report
      2018 Research-status Report
  • [Presentation] Whittaker 加群の代数的な性質について2018

    • Author(s)
      谷口健二
    • Organizer
      2017年度表現論ワークショップ
    • Related Report
      2017 Research-status Report
  • [Presentation] Whittaker 関数の空間の不変双一次形式について2017

    • Author(s)
      谷口健二
    • Organizer
      2016年度表現論ワークショップ
    • Place of Presentation
      県民ふれあい会館(鳥取県立生涯学習センター)
    • Year and Date
      2017-01-09
    • Related Report
      2016 Research-status Report
  • [Remarks] 谷口健二のホームページ 学術論文

    • URL

      http://www.gem.aoyama.ac.jp/~taniken/publications.html

    • Related Report
      2017 Research-status Report 2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi