• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on characterization of the fundamental function sigma in the theory of Abelian functions via heat equations and general addition formulae

Research Project

Project/Area Number 16K05082
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionMeijo University

Principal Investigator

Yoshihiro Onishi  名城大学, 理工学部, 教授 (60250643)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2017: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
KeywordsAbelian function / sigma function / elliptic Gauss sums / Hecke L-series / algebraic curves / Jacobian varieties / sigma functions / heat equations / Abelian functions / algebraic curve / heat equation / Abel function / Hurwitz integrality / 代数曲線 / Coble suface / Jacobian variety
Outline of Final Research Achievements

(1) The researcher got the Hurwitz integrality of the power series expansion, at the origin, of the sigma function attached to a higher genus curve. The result is
published as a paper on Proceedings of Edinburgh Mathematical Society. (2) The researcher and coworkers, J.C. Eilbeck, J. Gibbons, and S. Yasuda, investigated the heat equations for multi-variate sigma functions and get explicit recursion formulae as well as precise formulation of the Buchstaber-Leykin theory on such heat equations. The result is submitted. (3) Investigated on elliptic Gauss sum expression of the Hecke L-values at 1, the researcher found the equivalence of vanishing and validity of Kummer-type congruence for the corresponding coefficients. The researcher gave several talk in the conferences, RIMS conference "Mathematical sturucture observed from theory of Integral systems and its applications", The 23rd Number theory conference at Waseda University", and twice of Aichi Numebr theory Seminar".

Academic Significance and Societal Importance of the Research Achievements

本計画で得られた Abel 函数論の結果は, 伝統的な理論を深めるものであり, 楕円函数論がさうであつた様に, 数論に限らず, 様々な分野の数学で応用される様になるであらう.
また, 楕円 Gauss 和に関する結果は, additive reduction の場合の p-adic L-functions の研究に示唆を与へる可能性がある. さうでなくとも, Birch Swinnerton-Dyer 予想の意味することの広がりを実感するには, 身近な良い材料になると思ふ.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017 Other

All Int'l Joint Research (2 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (3 results) (of which Invited: 3 results) Remarks (3 results)

  • [Int'l Joint Research] Heriot-Watt university/Imperial College(英国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Heriot-Watt University(英国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Recursion Relations on the Power Series Expansion of the Universal Weierstrass Sigma Function2019

    • Author(s)
      John Chris Eilbeck and Yoshihiro Onishi
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: ?

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Arithmetical power series expansion of the sigma function for a plane curve.2018

    • Author(s)
      Yoshihiro Onishi
    • Journal Title

      Proc. of the Edinburgh Math. Soc.

      Volume: - Issue: 4 Pages: 995-1022

    • DOI

      10.1017/s0013091517000463

    • Related Report
      2018 Annual Research Report 2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Theory of heat equations for sigma functions.2017

    • Author(s)
      J. C. Eilbeck, J. Gibbons, Y. \^Onishi, and S. Yasuda
    • Journal Title

      arXiv.org

      Volume: -

    • Related Report
      2017 Research-status Report
  • [Journal Article] Arithmetical power series expansion of the sigma function of a plane curve2017

    • Author(s)
      Yoshihiro Onishi
    • Journal Title

      Proceedings of Edinburgh Mathematical Society

      Volume: ?

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] A recursion system on the expansion coefficients of the sigma function for a higher genus curve.2019

    • Author(s)
      Yoshihiro Onishi
    • Organizer
      The 23rd Conference on Number theory at Waseda University
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Vanishing elliptic Gauss sums and Bernoulli-Hurwitz type numbers2019

    • Author(s)
      Yoshihiro Onishi
    • Organizer
      The 40th Aichi Number theory Seminar
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Weierstrass の sigma 函数に関する熱方程式論の高い種数の場合 への拡張について2018

    • Author(s)
      Yoshihiro Onishi
    • Organizer
      RIMS 研究集会 2018 「可積分系理論から見える数理構造とその応用」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Remarks] Home Page of Yoshihiro Onishi

    • URL

      http://www2.meijo-u.ac.jp/~yonishi/

    • Related Report
      2018 Annual Research Report
  • [Remarks] Home Page of Yoshihiro Onishi

    • URL

      http://www2.meijo-u.ac.jp/~yonishi/index.html#publications

    • Related Report
      2017 Research-status Report
  • [Remarks] Yoshihiro Onishi

    • URL

      http://www2.meijo-u.ac.jp/~yonishi/

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi