• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Combinatorics of partially ordered sets and quantum symmetries

Research Project

Project/Area Number 16K05083
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionMeijo University

Principal Investigator

Maeno Toshiaki  名城大学, 理工学部, 教授 (60291423)

Project Period (FY) 2016-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords代数的組合せ論 / 量子代数 / 鏡映群 / Hopf代数 / 代数学 / 半順序集合
Outline of Final Research Achievements

The aim of the project is to study the structure of (finite) partially ordered sets from the viewpoints of combinatorial ring theory and of quantum deformations.
One of the main results of this project is the Lefschetz property for a certain class of Gorenstein algebras associated with matroids. This result implies the Sperner property for the geometric modular lattices. I also introduced the notion of the Solomon-Terao algebra for hyperplane arrangements with the collaborators, and have shown its basic properties.
The quantum K-theory for the flag variety was also studied in the project. The correspondence between quantum Grothendieck polynomials and K-k-Schur functions has been proved as a K-theoretic analogue of the Peterson isomorphism.

Academic Significance and Societal Importance of the Research Achievements

順序集合は理論的な考察対象としてのみならず、応用数理においても重要な役割を果たしている。本研究は、組合せ環論的アプローチや量子変形の観点から順序構造の組合せ的研究を目指したものである。
主な成果としてマトロイドから定まるGorenstein環を導入し、そのLefschetz性を研究したが、これは今後マトロイドに関わる組合せ環論の研究において基礎的な結果になるものと考えられる。
また、旗多様体の量子K環に関して量子Grothendieck多項式とK-k-Schur多項式との対応を研究したが、これはWeyl群上のBruhat順序の拡大とアフィンWeyl群上のBruhat順序の対応に相当している。

Report

(7 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2016 Other

All Int'l Joint Research (2 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results) Remarks (1 results)

  • [Int'l Joint Research] CIRM(イタリア)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Institut Mittag-Leffler(Sweden)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Solomon-Terao algebra of hyperplane arrangements2019

    • Author(s)
      Takuro Abe, Toshiaki Maeno, Satoshi Murai and Yasuhide Numata
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: to appear

    • NAID

      130007733331

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Polynomial expressions of p-ary auction functions2019

    • Author(s)
      Shizuo Kaji, Toshiaki Maeno, Koji Nuida and Yasuhide Numata
    • Journal Title

      Journal of Mathematical Cryptology

      Volume: to appear

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Peterson isomorphism in K-theory and relativistic Toda lattice2018

    • Author(s)
      Takeshi Ikeda, Shinsuke Iwao and Toshiaki Maeno
    • Journal Title

      International Mathematics Research Notices

      Volume: - Issue: 19 Pages: 6421-6462

    • DOI

      10.1093/imrn/rny051

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sperner property and finite-dimensional Gorenstein algebras associated to matroids2016

    • Author(s)
      Toshiaki Maeno and Yasuhide Numata
    • Journal Title

      Journal of Commutative Algebra

      Volume: 8 Issue: 4 Pages: 549-570

    • DOI

      10.1216/jca-2016-8-4-549

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Ideas and techniques in the theory of Lefschetz properties2019

    • Author(s)
      前野 俊昭
    • Organizer
      空間の代数的・幾何的モデルとその周辺
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] The Lefschetz property for Artinian Gorenstein algebras2018

    • Author(s)
      Toshiaki Maeno
    • Organizer
      Algebraic Geometry in Positive Characteristic and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Polynomial expressions of auction functions2016

    • Author(s)
      Toshiaki Maeno
    • Organizer
      情報セキュリティにおける数学的方法とその実践
    • Place of Presentation
      北海道大学
    • Related Report
      2016 Research-status Report
    • Invited
  • [Remarks] Lefschetz properties in Algebra, ...

    • URL

      http://www.mittag-leffler.se/workshop/lefschetz-properties-algebra-geometry-and-combinatorics

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi