• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of special functions associated with moduli spaces of algebraic varieties

Research Project

Project/Area Number 16K05086
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionHokkaido University

Principal Investigator

Matsumoto Keiji  北海道大学, 理学研究院, 教授 (30229546)

Research Collaborator TERASOMA Tomohide  東京大学, 大学院数理科学研究科, 教授 (50192654)
KANEKO Jyoichi  琉球大学, 名誉教授 (10194911)
OHARA Katsuyoshi  金沢大学, 理工学域, 教授 (00313635)
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords超幾何微分方程式系 / モノドロミー表現 / ねじれホモロジー群 / ねじれコホモロジー群 / 既約性 / テータ関数 / 相対ねじれホモロジー群 / 相対ねじれコホモロジー群 / 交点形式 / モノドロミー / 特殊関数 / モジュライ空間
Outline of Final Research Achievements

We introduce a hypergeometric system of differential equations in two variables with rank 9. We give integral representations of solutions forming a basis of a local solution space to this system, and study its monodromy representation, which describes global behavior of solutions to this system.
We study a period map for a 2-dimensional family of K3-surfaces by using Abel-Jacobi map for a family of algebraic curves of genus 2. We express its inverse in terms of theta functions.
We give a new approach to study Lauricella's hypergeometric system F_D by introducing relative twisted (co)homology groups and intersection forms on them.

Academic Significance and Societal Importance of the Research Achievements

多変数幾何微分方程式系 Lauricella's F_Dの研究に, 相対ねじれ(コ)ホモロジー群を導入し, 交点理論を整理したことが一番大きな成果である. パラメーターが整数となる場合でも, これらの群上に定まる交点形式を用いて, 解たちがみたす性質を考察することが可能となった.
この研究で得られた理論の統計学や数理物理学への応用や, 解の多重積分表示を有する多変数超幾何微分方程式系や超幾何関数以外の積分表示を有する特殊関数に対する新しい理論展開, 等の研究進展が期待できる.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (14 results)

All 2019 2018 2017 2016

All Journal Article (8 results) (of which Peer Reviewed: 8 results) Presentation (6 results) (of which Invited: 1 results)

  • [Journal Article] Period map of triple coverings of P^2 and mixed Hodge structures2019

    • Author(s)
      Matsumoto Keiji and Terasoma Tomohide
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 掲載決定

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Irreducibility of the monodromy representation of Lauricella's F_C2019

    • Author(s)
      Goto Yoshiaki and Matsumoto Keiji
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 掲載決定

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Pfaffian Equations and Contiguity Relations of the Hypergeometric Function of Type (k+1, k+n+2) and Their Applications2018

    • Author(s)
      Goto Yoshiaki and Matsumoto Keiji
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: 61 Pages: 315-347

    • NAID

      130007534842

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Schwarz maps associated with the triangle groups (2,4,4) and (2,3,6).2018

    • Author(s)
      Koguchi Yuto, Matsumoto Keiji, Seto Fuko
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 47 Pages: 69-108

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] The monodromy representations of local systems associated with Lauricella's F_D.2017

    • Author(s)
      Matsumoto Keiji
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 71 Pages: 329-348

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] An example of Schwarz map of reducible Appell's hypergeometric equation E_2 in two variables2017

    • Author(s)
      Matsumoto K., Sasaki T., Terasoma T., Yoshida M.
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 69 Pages: 563-595

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] The monodromy representations of local systems associated with Lauricella's F_D2017

    • Author(s)
      Keiji Matsumoto
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] A system of hypergeometric differential equations in two variables of rank 92017

    • Author(s)
      J. Kaneko, K. Matsumoto and K. Ohara
    • Journal Title

      International Journal of Mathematics

      Volume: 28

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] 超幾何微分方程式系 E(k,n;α) の射影モノドロミー表現2018

    • Author(s)
      松本圭司
    • Organizer
      第12回玉原特殊多様体研究集会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Relative twisted (co)homology groups associated with Lauricella's F_D2017

    • Author(s)
      松本圭司
    • Organizer
      日本数学会 2017年度 秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] 相対ねじれ(コ)ホモロジー群間の交点形式2017

    • Author(s)
      松本圭司
    • Organizer
      第11回玉原特殊多様体研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] パラメーターが整数になるときのねじれ(コ)ホモロジー群の挙動2017

    • Author(s)
      松本圭司
    • Organizer
      超幾何方程式研究会 2017
    • Place of Presentation
      神戸大学 (兵庫県 神戸市)
    • Related Report
      2016 Research-status Report
  • [Presentation] Irreducibility of the monodromy representation of Lauricella's F_C2017

    • Author(s)
      後藤良彰 松本圭司
    • Organizer
      2017 日本数学会 年会
    • Place of Presentation
      首都大東京 (東京都 八王子市)
    • Related Report
      2016 Research-status Report
  • [Presentation] The monodromy representation of Lauricella's F_D with integral exponents2016

    • Author(s)
      松本圭司
    • Organizer
      琉球大学 理学部 数学教室 談話会
    • Place of Presentation
      琉球大学 (沖縄県中頭郡西原町)
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi