• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Classification theory of projective varieties by Galois points and new developments

Research Project

Project/Area Number 16K05088
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionYamagata University

Principal Investigator

Fukasawa Satoru  山形大学, 理学部, 准教授 (20569496)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsガロア点 / 準ガロア点 / ガロア群 / 射影 / 射影代数多様体 / 正標数 / ガロワ点 / 自己同型群 / 代数学
Outline of Final Research Achievements

(1) A criterion for the existence of a birational embedding into a projective plane with two Galois points was presented. (2) Several new examples were described, by the criterion (joint works with K. Waki and K. Higashine). (3) The arrangement of Galois lines for the Giulietti-Korchmaros curve was determined (j.w.w. Higahine). (4) A criterion for two Galois points for quotient curves was presented (j.w.w. Higashine). (5) Plane curves possessing two Galois points at which Galois groups generate a semi-direct prodocut were classified (j.w.w. P. Speziali). (6) The set of all Galois points for double-Frobeninus nonclassical curves was determined (j.w.w. H. Borges).

Academic Significance and Societal Importance of the Research Achievements

ガロア点は曲線の対称性を表現していると考えられます。それが複数存在するという状況を、代数関数体という代数学の標準的な言語で表現できること(判定法)を発見しました。その表現は代数幾何、群論、数論という代数学の理論を結びつけるものです。この判定法を、符号(例:QRコード)の構成に用いられている「最大曲線」にも適用し、ガロア点を複数もつことを証明しました。ここにガロア点と符号理論とのつながりが見えます。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (20 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (14 results) (of which Int'l Joint Research: 3 results,  Invited: 12 results)

  • [Int'l Joint Research] サンパウロ大学(ブラジル)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] バジリカータ大学(イタリア)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Birational embeddings of the Hermitian, Suzuki and Ree curves with two Galois points2019

    • Author(s)
      Satoru Fukasawa
    • Journal Title

      Finite Fields and Their Applications

      Volume: 57 Pages: 60-67

    • DOI

      10.1016/j.ffa.2019.02.002

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Galois lines for the Giulietti-Korchmaros curve2019

    • Author(s)
      Satoru Fukasawa and Kazuki Higashine
    • Journal Title

      Finite Fields and Their Applications

      Volume: 57 Pages: 268-275

    • DOI

      10.1016/j.ffa.2019.02.009

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A birational embedding with two Galois points for certain Artin-Schreier curves2018

    • Author(s)
      Satoru Fukasawa and Kazuki Higashine
    • Journal Title

      Finite Fields and Their Applications

      Volume: 52 Pages: 281-288

    • DOI

      10.1016/j.ffa.2018.04.009

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A birational embedding of an algebraic curve into a projective plane with two Galois points2018

    • Author(s)
      Satoru Fukasawa
    • Journal Title

      Journal of Algebra

      Volume: 511 Pages: 95-101

    • DOI

      10.1016/j.jalgebra.2018.06.020

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] Galois lines for the Giulietti-Korchmaros curve2018

    • Author(s)
      Satoru Fukasawa
    • Organizer
      Combinatorics 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Galois lines for the Giulietti-Korchmaros curve2018

    • Author(s)
      深澤 知
    • Organizer
      Workshop on Galois point and related topics
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 2つの外ガロア点に付随する群が半直積を生成する平面曲線の分類2018

    • Author(s)
      深澤 知
    • Organizer
      射影多様体の幾何とその周辺 2018
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Galois points for double-Frobenius nonclassical curves2018

    • Author(s)
      深澤 知
    • Organizer
      新潟代数セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 2つの外ガロア点に付随する群が半直積を生成する平面曲線の分類2018

    • Author(s)
      深澤 知
    • Organizer
      代数幾何ミニワークショップ「正標数における代数曲線」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 準ガロア点と自己同型群2017

    • Author(s)
      深澤 知
    • Organizer
      代数曲線と自己同型群
    • Place of Presentation
      山形大学理学部
    • Year and Date
      2017-03-03
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 平面代数曲線上のガロア点, 有理点, 符号2017

    • Author(s)
      深澤 知
    • Organizer
      代数幾何学と暗号数理の展開
    • Place of Presentation
      九州大学西新プラザ
    • Year and Date
      2017-02-07
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 正標数におけるガロア点を複数もつ平面曲線2017

    • Author(s)
      深澤 知
    • Organizer
      代数幾何学研究集会―宇部―
    • Place of Presentation
      宇部工業高等専門学校
    • Year and Date
      2017-01-07
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] A birational embedding of an algebraic curve into a projective plane with two Galois points2017

    • Author(s)
      Satoru Fukasawa
    • Organizer
      The 13th International Conference on Finite Fields and their Applications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] A birational embedding of an algebraic curve into a projective plane with two Galois points2017

    • Author(s)
      深澤 知
    • Organizer
      Workshop on Galois point and related topics
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 正標数におけるガロア点を複数もつ平面曲線2017

    • Author(s)
      深澤 知
    • Organizer
      K3曲面・エンリケス曲面ワークショップ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] A birational embedding of an algebraic curve into a projective plane with two Galois points2017

    • Author(s)
      Satoru Fukasawa
    • Organizer
      Geometric Galois Theory and Monodromy
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 標数零における平面曲線のガロア点の個数について2016

    • Author(s)
      深澤 知
    • Organizer
      Workshop on Galois point and related topics
    • Place of Presentation
      新潟大学駅南キャンパスときめいと
    • Year and Date
      2016-06-03
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 有限体上の平面曲線に対する有理点とガロア点2016

    • Author(s)
      深澤 知
    • Organizer
      離散数理セミナー
    • Place of Presentation
      山形大学理学部
    • Year and Date
      2016-05-13
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi