• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On resolution of singularities of algebraic varieties in positive characteristic

Research Project

Project/Area Number 16K05100
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionChubu University (2019)
Kyoto University (2016-2018)

Principal Investigator

KAWANOUE Hiraku  中部大学, 工学部, 准教授 (50467445)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords代数幾何学 / 特異点解消 / IFP
Outline of Final Research Achievements

The target of this research project is the problem of resolution of singularities. The problem of resolution of singularities is one of the most important problem in algebraic geometry. It is established in characteristic 0, in any dimension, due to Professor Heisuke Hironaka. However, it is still widely open in positive characteristic. we introduced the new approach, called IFP, to solve this important problem. I have developed IFP with the coworker Kenji Matsuki, a professor in Purdue university. During the period of this research project, we established two new proof for the resolution of singularities for surfaces, from the view point of IFP. We also have some new input for 3-fold case, though which is still work in progress.

Academic Significance and Societal Importance of the Research Achievements

この研究では本研究者が提案し推進しているIFPというアプローチを用いて曲面の特異点解消について新しい証明を与えた. この結果は2通りの意義がある. 一つは, これが不変量の減少を見ることで特異点解消を確立する構成的な証明である点である.曲面の特異点解消の構成的な証明はこれまで知られていなかった. もう一つの意義は, 一般次元の特異点解消の為のプログラムであるIFPの有効性を示したという点である.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (4 results)

All 2019 2018 2016

All Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (2 results) (of which Invited: 1 results)

  • [Journal Article] A new strategy for resolution of singularities in the monomial case in positive characteristic2018

    • Author(s)
      Hiraku Kawanoue and Kenji Matsuki
    • Journal Title

      Rev. Mat. Iberoam.

      Volume: 34(3) Issue: 3 Pages: 1229-1276

    • DOI

      10.4171/rmi/1023

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Resolution of singularities of an idealistic filtration in dimension $3$ after Benito-Villamayor.2016

    • Author(s)
      Hiraku Kawanoe and Kenji Matsuki
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: 70

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] 再帰的自由ではない自由直線配置について2019

    • Author(s)
      川ノ上 帆
    • Organizer
      岐阜数理科学セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 曲面の埋め込み特異点解消について2016

    • Author(s)
      川ノ上帆
    • Organizer
      日本数学会
    • Place of Presentation
      関西大学
    • Year and Date
      2016-09-16
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi