• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Degenerations of Calabi-Yau manifolds and mirror symmetry

Research Project

Project/Area Number 16K05105
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionGakushuin University

Principal Investigator

Hosono Shinobu  学習院大学, 理学部, 教授 (60212198)

Project Period (FY) 2016-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsカラビ・ヤウ多様体 / ミラー対称性 / 周期積分 / モジュライ空間 / 多変数超幾何微分方程式 / モジュラ―関数 / 複素多様体の変形 / 多変数超幾何方程式 / 双有理幾何学 / 多変数超幾何関数 / 超幾何微分方程式 / モノドロミー / 射影幾何学 / グロモフ・ウィッテン不変量
Outline of Final Research Achievements

From the study of string theory in theoretical physics, certain special manifolds, called Calabi-Yau manifolds, were attracted attentions of many researchers, and around 1990, a mysterious symmetry called "mirror symmetry" was discovered in world of Calabi-Yau manifolds. Since the discovery of the mirror symmetry, extensive study toward mathematical understanding of the symmetry has been done. Now, we have two approaches to study the symmetry; one is categorical and the other is geometric method. In this research project, PI has made achievements in constructing explicit and interesting Calabi-Yau manifolds aiming to reveal mirror symmetry. These have been done by developing necessary methods to analyze behavior of some integral called period integral.

Academic Significance and Societal Importance of the Research Achievements

カラビ・ヤウ多様体のミラー対称性は、その発見から30年近くが経過し、関連する数学の分野に多数の影響を与えてきました。しかしながら、対称性の数学的の完全な理解には至っておらず、現在も不思議な対称性と思われています。このような対称性が現れる興味深いカラビ・ヤウ多様体を構成することは、ミラー対称性を深く理解する上で大切な役割を果たします。また、具体的な例を構築すると同時に、それらを調べる手段・方法を整備して確立することは、ミラー対称性の解明に限らず、派生する様々な数学の問題への応用に寄与するもので、数学の大切な蓄積となります。

Report

(7 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (30 results)

All 2021 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (3 results) Journal Article (9 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 8 results,  Open Access: 3 results,  Acknowledgement Compliant: 1 results) Presentation (17 results) (of which Int'l Joint Research: 11 results,  Invited: 17 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Harvard University/Brandeis University(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] CMSA, Harvard University/Math. Dept. of Brandeis University(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Harvard University/Brandeis University(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] 周期積分の満たす微分方程式とK3ラムダ関数2021

    • Author(s)
      細野 忍
    • Journal Title

      第66回代数学シンポジウム報告集

      Volume: 66

    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] K3 surfaces from configurations of six lines in P2 and mirror symmetry I.2020

    • Author(s)
      Shinobu Hosono, Bong Lian, Hiromichi Takagi, S.-T. Yau
    • Journal Title

      Commun. in Number Theory and Phys.

      Volume: 4 Pages: 739-783

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Derived categories of Artin-Mumford double solids2020

    • Author(s)
      S. Hosono and H. Takagi
    • Journal Title

      Kyoto J. Math.

      Volume: 60

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners2020

    • Author(s)
      S. Hosono and H. Takagi
    • Journal Title

      Advanced Lectures in Mathematics

      Volume: 47

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] K3 surfaces from configurations of six lines in P2 and mirror symmetry II-- λK3 -functions2019

    • Author(s)
      S. Hosono, B.H. Lian and S.-T. Yau
    • Journal Title

      International Mathematics Research Notices

      Volume: - Issue: 17 Pages: 13231-13281

    • DOI

      10.1093/imrn/rnz259

    • Related Report
      2021 Annual Research Report 2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Movable vs monodromy nilpotent cones of Calabi-Yau manifolds2018

    • Author(s)
      Hosono, Shinobu; Takagi, Hiromichi
    • Journal Title

      SIGMA Symmetry Integrability Geom. Methods Appl.

      Volume: 14 Pages: 039-37

    • DOI

      10.3842/sigma.2018.039

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Derived Categories of Artin-Mumford Double Solids2018

    • Author(s)
      Shinobu Hosono and Hiromichi Takagi
    • Journal Title

      Kyoto J. Math. (accepted for publication)

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Towards homological projective duality for S2P3 and S2P42017

    • Author(s)
      Shinobu Hosono and Hiromichi Takagi
    • Journal Title

      Advances in Mathematics

      Volume: 317 Pages: 371-409

    • DOI

      10.1016/j.aim.2017.06.039

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Double Quintic Symmetroids, Reye Congruences, and Their Derived Equivalence2016

    • Author(s)
      S. Hosono, H. Takagi
    • Journal Title

      Journal of Differentail Geometry

      Volume: 104, (32016) Issue: 3 Pages: 443-497

    • DOI

      10.4310/jdg/1478138549

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 周期積分の満たす微分方程式とK3ラムダ関数2021

    • Author(s)
      細野 忍
    • Organizer
      第66回代数学シンポジウム
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Calabi-Yau 多様体の問題2021

    • Author(s)
      細野 忍
    • Organizer
      複素幾何の諸問題II
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Movable vs Monodromy nilpotent cones in mirror symmetry of Calabi-Yau manifolds2019

    • Author(s)
      S. Hosono
    • Organizer
      International Workshop on Derived Categories and Related Topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] K3 analogues of the elliptic lambda function from a double cover family of K3 surfaces2019

    • Author(s)
      S. Hosono
    • Organizer
      Interaction Between Algebraic Geometry and QFT
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Double cover family of K3 surfaces and mirror symmetry2019

    • Author(s)
      Shinobu Hosono
    • Organizer
      Workshop on Mirror Symmetry and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Double cover family of K3 surfaces and mirror symmetry2019

    • Author(s)
      Shinobu Hosono
    • Organizer
      Special Seminar at CMSA, Harvard University
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] K3 surfaces from configurations of six lines in P2 and mirror symmetry2018

    • Author(s)
      Shinobu Hosono
    • Organizer
      Categorial and Analytic Invariants in Algebraic Geometry VI
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Movable vs monodromy nilpotent cones of Calabi-Yau manifolds2018

    • Author(s)
      Shinobu Hosono
    • Organizer
      Focus Semester on Homological Mirror Symmetry
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Gluing monodromy nilpotent cones of a family of K3 surfaces2018

    • Author(s)
      Shinobu Hosono
    • Organizer
      Department of Mathathematics, Harvard University, USA
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Birational geometry from the moduli spaces of mirror CICYs2017

    • Author(s)
      Shinobu Hosono
    • Organizer
      Mathematical Physics Seminar at Brandeis
    • Place of Presentation
      Brandeis University, USA
    • Year and Date
      2017-03-06
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Mirror symmetry and birational geometry of CICYs2017

    • Author(s)
      Shinobu Hosono
    • Organizer
      The 99th Encounter between Mathematics and Thoretical Physics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Movable vs monodromy nilpotent cones in mirror symmetry of Calabi-Yau manifolds2017

    • Author(s)
      Shinobu Hosono
    • Organizer
      Categorical and Analytic Invariants in Algebraic Geometry
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] GKZ hypergeometric systems in mirror symmetry of CICY manifolds2017

    • Author(s)
      Shinobu Hosono
    • Organizer
      Master Lectures --The Legacy of Carl Friedrich Gauss
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Birational geometry from the moduli spaces of mirror CICYs2016

    • Author(s)
      Shinobu Hosono
    • Organizer
      Workshop on mirror symmetry and related topics, Kyoto 2016
    • Place of Presentation
      京都大学理学部
    • Year and Date
      2016-12-12
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Birational geometry from the moduli spaces of mirror CICYs2016

    • Author(s)
      Shinobu Hosono
    • Organizer
      Categorical and Analytic invariants IV
    • Place of Presentation
      IPMU, 東京大学
    • Year and Date
      2016-11-15
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Birational geometry from the moduli spaces of mirror CICYs2016

    • Author(s)
      Shinobu Hosono
    • Organizer
      Modular Forms in String Theory
    • Place of Presentation
      Banff International Research Station (BIRS), Canada
    • Year and Date
      2016-09-27
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] カラビ・ヤウ多様体の幾何学とミラーシンメトリー2016

    • Author(s)
      Shinobu Hosono
    • Organizer
      ミラーシンメトリーの数理と物理
    • Place of Presentation
      東京大学大学院数理科学研究科
    • Year and Date
      2016-08-26
    • Related Report
      2016 Research-status Report
    • Invited
  • [Funded Workshop] On line workshop "Calabi-Yau Varieties and Related Topics 2021"2021

    • Related Report
      2021 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi