• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the algebraic-geometric codes defined from restriction of vector bundles to divisors

Research Project

Project/Area Number 16K05111
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionJapan Women's University

Principal Investigator

NAKASHIMA Tohru  日本女子大学, 理学部, 教授 (20244410)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords代数幾何符号 / ベクトル束 / 因子 / 安定ベクトル束 / Seshadri定数 / 公開鍵暗号 / 反射層 / 代数学
Outline of Final Research Achievements

In the modern society the error-correcting codes, which correct the errors which occurred in the process of transmitting information, is an indispensable technology. The purpose of the present research was to elucidate the properties of the general Savin code, which is an algebraic-geometric code defined by the restriction of vector bundles to divisors. As a result of the research, we could determine the parameters of the general Savin codes on certain algebraic surfaces. Furthermore we solved the existence problem of semistable sheaves on projective threefolds and proved a Bogomolov-Gieseker type inequality.

Academic Significance and Societal Importance of the Research Achievements

従来知られていたGoppa符号やSavin符号などの代数幾何符号は、代数曲線上のベクトル束の点での評価写像を用いて構成されていたが、当研究ではこれを一般化して高次元射影多様体上の因子への制限写像を用いた一般Savinの概念を導入し、パラメーターの評価などの基本的性質を明らかにした点に学術的意義がある。今後、従来より良いパラメーターを備えた一般Savin符号を構成できれば、情報通信の分野への応用が期待される。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2020 2019 2017

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] Existence of stable reflexive sheaves on certain threefolds2020

    • Author(s)
      Tohru Nakashima
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 224 Issue: 3 Pages: 1205-1214

    • DOI

      10.1016/j.jpaa.2019.07.014

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Effective bounds for semistable sheaves on a threefold2019

    • Author(s)
      Tohru Nakashima
    • Journal Title

      Journal of Geometry and Physics

      Volume: 140 Pages: 271-279

    • DOI

      10.1016/j.geomphys.2019.02.005

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Higher Brill-Noether loci and Bogomolov-Gieseker type inequality2017

    • Author(s)
      Tohru Nakashima
    • Journal Title

      Archiv der Mathematik

      Volume: 109 Issue: 4 Pages: 335-340

    • DOI

      10.1007/s00013-017-1067-7

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Stable reflexive sheaves of degree zero on Calabi-Yau manifolds2017

    • Author(s)
      Tohru Nakashima
    • Journal Title

      Journal of Geometry and Physics

      Volume: 121 Pages: 1-7

    • DOI

      10.1016/j.geomphys.2017.06.012

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Generalizations of algebraic-geometric codes2017

    • Author(s)
      中島 徹
    • Organizer
      代数幾何学と暗号数理の展開
    • Place of Presentation
      九州大学西陣プラザ
    • Year and Date
      2017-02-06
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi