• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Projective Algebraic Geometry in Positive Characteristic

Research Project

Project/Area Number 16K05113
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionWaseda University

Principal Investigator

KAJI Hajime  早稲田大学, 理工学術院, 教授 (70194727)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords射影多様体 / 正標数 / ガウス写像 / 双対多様体 / 接的退化曲線 / グラスマン束 / 次数公式 / 射影双対 / 再帰性 / 代数幾何
Outline of Final Research Achievements

In 1845, George Boole discovered a formula for the degree of dual manifolds of Veronese varieties. In general, the dual variety of a projective variety X is a closed variety of dual projective space given by the closure of the set of hyperplanes tangent to X. In the previous research, for Veronese varieties, we obtained an degree formula (unpublished) that generalizes dual varieties into images of general Gauss maps. In this research, we investigated the asymptotic behavior of the image degree of the general Gauss map of the Veronese varieties using the generalized degree formula.

Academic Significance and Societal Importance of the Research Achievements

170年以上前にGeorge Booleにより発見されていたヴェロネーゼ多様体の双対多様体の次数公式に焦点を当てて研究をした.一般ガウス写像の像の次数に一般化した公式自体は,与えられた数の分割に対応する既約表現の次元を含む一見複雑なものとなったが,漸近的挙動について,上限・下限は意外に単純な式により, ある程度良く評価されることがわかった.
Booleの公式の一般化として他の多様体の双対多様体の次数公式は研究されてきたが,一般ガウス写像の像の次数については本研究で初めて扱われたものである.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (11 results) (of which Int'l Joint Research: 1 results,  Invited: 9 results)

  • [Journal Article] Higher Gauss Maps of Veronese Varieties-a generalization of Boole's formula2018

    • Author(s)
      KAJI, Hajime
    • Journal Title

      Communications in Algebra

      Volume: 46 (9) Issue: 9 Pages: 4064-4078

    • DOI

      10.1080/00927872.2018.1435790

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Powers of Ideals2019

    • Author(s)
      楫 元
    • Organizer
      研究集会「第二回宇都宮大学代数幾何研究集会」, 宇都宮大学
    • Related Report
      2019 Annual Research Report
  • [Presentation] Degree Formula for Grassmann Bundles2019

    • Author(s)
      KAJI, Hajime
    • Organizer
      NSTS Seminar in Algebraic Geometry, NSTS (=国家理論科学科学研究中心), NTS (=国立台湾大学)
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Two Results on Curves in P^32019

    • Author(s)
      楫 元
    • Organizer
      研究集会「都の西北 代数幾何学シンポジウム」, 早稲田大学
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Higher Gauss maps of Veronese varieties ―a generalization of Boole's formula―2019

    • Author(s)
      楫 元
    • Organizer
      研究集会「Degenerations, algebraic surfaces and related topics」, 神戸大学
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Degree formula for Grassmann bundles, II2019

    • Author(s)
      楫 元
    • Organizer
      研究集会「Arithmetic and Algebraic Geometry 2019 -in honour of Professor Tomohide Terasoma's 60th birthday-」東京大学大学院数理科学研究科棟大講義室 (駒場1キャンパス), 2019年1月22日.
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Degree Formulae for Two-Step Flag Varieties2018

    • Author(s)
      楫 元
    • Organizer
      研究集会「第一回宇都宮大学代数幾何研究集会」 宇都宮大学 (峰キャンパス).
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Degree formula for Grassmann bundles and its applications2018

    • Author(s)
      楫 元
    • Organizer
      研究集会「ベクトル束の分裂・構成・安定性とその応用」 九州大学(伊都キャンパスウェスト).
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On a problem posed by Alessandro Terracini2018

    • Author(s)
      楫 元
    • Organizer
      第5回代数幾何学研究集会-宇部-
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] グラスマン束の次数公式 (新証明)2018

    • Author(s)
      楫 元
    • Organizer
      25回沼津改め静岡研究会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] グラスマン束の次数公式 (新証明) とその応用2016

    • Author(s)
      楫元
    • Organizer
      山形代数幾何小研究集会
    • Place of Presentation
      山形大学
    • Related Report
      2016 Research-status Report
  • [Presentation] グラスマン束の次数公式 (新証明) とその応用2016

    • Author(s)
      楫元
    • Organizer
      研究集会「射影多様体の幾何とその周辺」
    • Place of Presentation
      高知工科大学
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi