• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Penrose transform for indefinite Grassmannian manifolds

Research Project

Project/Area Number 16K05122
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionThe University of Tokyo

Principal Investigator

SEKIGUCHI Hideko  東京大学, 大学院数理科学研究科, 准教授 (50281134)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2017: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2016: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Keywordsペンローズ変換 / ユニタリ表現 / 有界対称領域 / 表現の分岐則 / 複素多様体 / リー群 / グラスマン多様体 / 積分幾何
Outline of Final Research Achievements

I have been studying so called the Penrose transform, which originated in mathematical physics. My view point is based on representation theory of semisimple Lie groups, in particular, a geometric realization of singular (infinite-dimensional) representations via the Penrose transform. Our main concern is with the characterization of the image of the Penrose transform by means of a system of partial differential equations on the cycle space, e.g., a generalization of the Gauss-Aomoto-Gelfand hypergeometric differential equations to higher degree.
During this period, I have focused on the comparison of two indefinite Grassmannian manifolds, which are not biholomorphic to each other, but their Dolbeault cohomologies may have intimate relations.

Academic Significance and Societal Importance of the Research Achievements

本研究は当該研究代表者が従前行ってきたペンローズ変換の研究に立脚し,それをさらに深化させ高次元の非コンパクトな複素多様体の上で無限次元表現の幾何的な解明を目指すものである。非コンパクトな複素多様体のコホモロジーは無限次元空間になり,その構造は十分に解明されているとはいえない。半単純リー群の無限次元表現論と積分幾何の手法を用いて,このコホモロジー空間をより精密に理解し,逆にパラメータが特異な場合の無限次元表現の未知の性質を幾何的にとらえるという挑戦的な課題に取り組んでいる。

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (4 results)

All 2020 2018 2017 2016

All Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results) Funded Workshop (1 results)

  • [Presentation] Representations of semisimple Lie groups and Penrose transform2018

    • Author(s)
      Hideko Sekiguchi
    • Organizer
      Tokyo-Lyon Conference in Mathematics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Representations of semisimple Lie groups and Penrose transform2017

    • Author(s)
      Hideko Sekiguchi
    • Organizer
      トポロジー火曜セミナー,リー群論・表現論セミナーの合同セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Representations of Semisimple Lie Groups and Penrose transform2016

    • Author(s)
      Hideko Sekiguchi
    • Organizer
      Colloquium, Reims University
    • Place of Presentation
      Reims University, France
    • Year and Date
      2016-09-27
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Integral Geometry, Representation Theory and Complex Analysis2020

    • Related Report
      2020 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi