• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Canonical forms in geometry and its applications

Research Project

Project/Area Number 16K05128
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKyoto Institute of Technology

Principal Investigator

Ikawa Osamu  京都工芸繊維大学, 基盤科学系, 教授 (60249745)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords対称空間 / 超極作用 / Hermann作用 / 対称三対 / Hermann作用 / 擬リーマン対称空間 / リーマン幾何学 / 標準形理論
Outline of Final Research Achievements

・For a given compact connected Lie group and an involution on it, we can define a hyperpolar action, which is called a σ-action. We studied the orbit space and the properties of the action using a symmetric triad. The result is a natural extension of maximal torus theory.
・There exists a one to one correspondence between the set of compact symmetric triads and that of pseudo-Riemannian symmetric pairs, which is a generalization of Cartan’ duality which state a one to one correspondence between the local isomorphic classes of Riemannian symmetric spaces of compact type and the isometric classes of Riemannian symmetric spaces of noncompact type. Thus we call it the generalized duality. We found the applications of generalized duality to Wirtinger inequality and backward Wirtinger inequality.

Academic Significance and Societal Importance of the Research Achievements

超極作用,特にHermann作用,は重要な研究対象であるが,これまで詳しく調べられていたのはコンパクト対称空間へのイソトロピー群の作用であった.コンパクト対称空間へのイソトロピー群の作用の拡張であるHermann作用について詳しく調べることは,今後の幾何学における標準形理論の発展の基礎になる.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (16 results)

All 2019 2018 2017 2016 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 1 results) Presentation (9 results) Remarks (1 results)

  • [Journal Article] σ-actions and symmetric triads2018

    • Author(s)
      Osamu Ikawa
    • Journal Title

      Tohoku Math. J.

      Volume: 70

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A Duality Between Compact Symmetric Triads and Semisimple Pseudo-Riemannian Symmetric Pairs with Applications to Geometry of Hermann Type Actions2017

    • Author(s)
      Baba Kurando、Ikawa Osamu、Sasaki Atsumu
    • Journal Title

      Hermitian-Grassmannian Submanifold, Springer Proceedings in Mathematics & Statistics

      Volume: 203 Pages: 211-221

    • DOI

      10.1007/978-981-10-5556-0_18

    • ISBN
      9789811055553, 9789811055560
    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] The geometry of orbits of Hermann type actions2017

    • Author(s)
      Ikawa, Osamu
    • Journal Title

      Contemporary perspectives in differential geometry and its related fields

      Volume: 1 Pages: 67-78

    • DOI

      10.1142/9789813220911_0005

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] σ-actions and symmetric triads2017

    • Author(s)
      Osamu Ikawa
    • Journal Title

      Tohoku Math. J.

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The geometry of orbits of Hermann type actions2017

    • Author(s)
      Osamu Ikawa
    • Journal Title

      Proceedings of ICDM 2016

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] A duality between compact symmetric triads and semisimple pseudo-Riemannian symmetric pairs with applications to geometry of Hermann type actions2017

    • Author(s)
      Kurando Baba, Osamu Ikawa and Atsumu Sasaki
    • Journal Title

      The 20th International Workshop on Hermitian Symmetric Spaces and Submanifolds

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] 一般化された双対,重複度付き対称三対,二重佐武図形とそれらの応用2019

    • Author(s)
      井川治
    • Organizer
      2019名城幾何学研究集会
    • Related Report
      2018 Annual Research Report
  • [Presentation] キャリブレーション等式と超極作用2018

    • Author(s)
      馬場蔵人,井川治,笹木集夢
    • Organizer
      日本数学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 擬リーマン幾何学におけるキャリブレーション等式と双対性2018

    • Author(s)
      馬場蔵人,井川治,笹木集夢
    • Organizer
      日本数学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 複素旗多様体内の二つの実形の交叉のFloerホモロジー2018

    • Author(s)
      奥田隆幸,井川治,入江博,酒井高司,田崎博之
    • Organizer
      日本数学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] A generalization of the duality for Riemannian symmetric spaces and its applications2018

    • Author(s)
      Osamu Ikawa
    • Organizer
      ICDG2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] キャリブレーションの不等式の群作用による統一的証明2017

    • Author(s)
      井川治
    • Organizer
      部分多様体論・湯沢2017
    • Related Report
      2017 Research-status Report
  • [Presentation] The geometry of orbits of Hermann type actions2016

    • Author(s)
      Osamu Ikawa
    • Organizer
      ICDG2016
    • Place of Presentation
      Veliko Tarnobo Univ., Bulgaria
    • Related Report
      2016 Research-status Report
  • [Presentation] A duality between semisimple pseudo-Riemannian symmetric pairs and compact symmetric triads2016

    • Author(s)
      馬場蔵人,井川治,笹木集夢
    • Organizer
      日本数学会
    • Place of Presentation
      関西大学
    • Related Report
      2016 Research-status Report
  • [Presentation] 半単純擬リーマン対称対の分類の別証明-コンパクト対称三対の視点から-2016

    • Author(s)
      馬場蔵人,井川治,笹木集夢
    • Organizer
      日本数学会
    • Place of Presentation
      関西大学
    • Related Report
      2016 Research-status Report
  • [Remarks] 京都工芸繊維大学 研究者総覧

    • URL

      http://www.hyokadb.jim.kit.ac.jp/search/index.html

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi