• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on symplectic quotients concerned with branching problems

Research Project

Project/Area Number 16K05137
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionChuo University

Principal Investigator

Takakura Tatsuru  中央大学, 理工学部, 教授 (30268974)

Co-Investigator(Kenkyū-buntansha) 三好 重明  中央大学, 理工学部, 教授 (60166212)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsシンプレクティック商 / 余随伴軌道 / 旗多様体 / ウェイト多様体 / 分岐問題 / 凸多面体 / 結晶基底 / 幾何学 / トポロジー
Outline of Final Research Achievements

We studied the multiplicity varieties and multiple weight varieties associated with coadjoint orbits (flag manifolds) of a compact Lie group, and obtained the results as follows.
First, we characterized the special vector volume function of type A, by means of a system of differential equations (arXiv: 1904.05000). Second, we proved that the symplectic volume function of a nondegenerate multiple weight variety of type A determines the cohomology ring over real numbers, and applied it to the study of double weight varieties of type A2. Third, we showed that a nondegenerate special weight variety of type A has the structure of a generalized Bott tower.
We gave presentations about the results as above in some international and domestic conferences.

Academic Significance and Societal Importance of the Research Achievements

意味のあるよいクラスの空間の組織的構成、それらの各種不変量の決定と同型類や大域的構造の深い理解、またその過程における表現論や組合せ論への寄与、等が、学術的意義として挙げられる。また、個々の具体例における詳細な計算過程や計算結果自体にも味わいがある点は、本研究の特色・独創性の一つと考えられる。
さらに、国内外の他の研究との関連が判明し、派生する問題もいくつか得られたことは、今後の研究の広がりを示唆している。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2018 2017

All Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results)

  • [Presentation] On multiplicity varieties and weight varieties2018

    • Author(s)
      Tatsuru Takakura
    • Organizer
      The 4th China-Japan Geometry Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Construction of smooth typical foliations of 3-manifolds2018

    • Author(s)
      Shigeaki Miyoshi
    • Organizer
      Foliations and Diffeomorphism Groups 2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On multiplicity varieties2017

    • Author(s)
      髙倉 樹
    • Organizer
      シンプレクティック幾何学とその周辺
    • Place of Presentation
      熱海第一ビル
    • Year and Date
      2017-03-07
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Multiplicities in equivariant indices and symplectic quotients 1,22017

    • Author(s)
      髙倉 樹
    • Organizer
      Koriyama Geometry and Physics Days 2017, ``Geometric Quantization and related topics"
    • Place of Presentation
      日本大学工学部
    • Year and Date
      2017-02-14
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] On volume functions of special flow polytopes2017

    • Author(s)
      高倉 樹
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Place of Presentation
      金沢大学サテライト・プラザ
    • Year and Date
      2017-01-18
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi