• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Topological study of real singularities and manifolds using fibring structures

Research Project

Project/Area Number 16K05140
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKeio University (2018)
Tohoku University (2016-2017)

Principal Investigator

ISHIKAWA Masaharu  慶應義塾大学, 経済学部(日吉), 教授 (10361784)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords特異点 / 安定写像 / トーリック型コンパクト化 / 3次元多様体論 / 接触構造 / 結び目理論 / 低次元トポロジー / 多面体 / 特異点論 / 幾何学
Outline of Final Research Achievements

We studied the information of manifolds and singularities using singular fibers of fiber bundles given by polynomial mappings and stable maps, and further described their global information. In the study of singularities at infinity of polynomial mappings, we proved that, in two-variable real polynomial case, the atypical values of singularities at infinity can be determined by using toric compactifications and toric resolutions. For complex plane curve singularities, we gave a way to describe the embeddings of the Milnor fibers into the Milnor ball by polyhedrons called shadows. This result was obtained by using the real morsification and A'Campo's divides. Concerning the study of 3-manifolds appearing on the boundary of fibrations of 4-manifolds, we studied a certain correspondence between flow-spines and contact structures.

Academic Significance and Societal Importance of the Research Achievements

多様体間の写像は数学のみならず自然科学全般において重要な道具である。多様体間の滑らかな写像は、ほとんどの場合において特異点をもつ。滑らかな点における現象は把握し易いが、特異点における現象を理解するためには、その特異点の性質を深く知る必要がある。本研究では、多項式写像の無限遠の特異点や複素平面曲線特異点などの位相的性質について、これまでに知られている結果よりも更に深い理解を得ることに成功した。これらの結果は、今後の3次元多様体論と4次元多様体論を結び付ける研究や、多変数多項式写像の特異点および高次元多様体のファイバー束構造の研究のための基礎として、重要な役割を果たすものである。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (21 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (4 results) Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results) Presentation (13 results) (of which Int'l Joint Research: 4 results,  Invited: 12 results)

  • [Int'l Joint Research] VAST(ベトナム)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] VAST/ダラット大学(ベトナム)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] VIASM/ダラット大学(ベトナム)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] Chelyabinsk State University(ロシア連邦)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Milnor fibration, A'Campo's divide and Turaev's shadow2020

    • Author(s)
      Masaharu Ishikawa, Hironobu Naoe
    • Journal Title

      Proceedings of FJV2017 Kagoshima: "Singularities --- Kagoshima".

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Bifurcation sets of real polynomial functions of two variables and Newton polygons2019

    • Author(s)
      Masaharu Ishikawa, Tat-Thang Nguyen, Tien-Son Pham
    • Journal Title

      Journal of Mathematical Society of Japan

      Volume: -

    • NAID

      130007733324

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Virtual unknotting numbers of certain virtual torus knots2017

    • Author(s)
      Masaharu Ishikawa, Hirokazu Yanagi
    • Journal Title

      Journal of Knot Theory and Its Ramifications 26

      Volume: 26 Issue: 11 Pages: 1750070-1750070

    • DOI

      10.1142/s0218216517500705

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] On Innermost Circles of the Sets of Singular Values for Generic Deformations of Isolated Singularities2017

    • Author(s)
      Kazumasa Inaba, Masaharu Ishikawa, Masayuki Kawashima, Nguyen Tat Thang
    • Journal Title

      Acta Mathematica Vietnamica

      Volume: 42 Issue: 2 Pages: 237-247

    • DOI

      10.1007/s40306-016-0200-1

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Shadow presentation of Milnor fibers2019

    • Author(s)
      石川昌治
    • Organizer
      Workshop on Topology of Singularities
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Positive flow-spines and contact 3-manifolds2019

    • Author(s)
      石川昌治
    • Organizer
      Branched Coverings, Degenerations, and Related Topics 2019
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Abalone, Seifert fibration and coil surgery2019

    • Author(s)
      石川昌治
    • Organizer
      Geometric Topology of Low Dimensions
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 3次元多様体の正フロースパインと接触構造2018

    • Author(s)
      石川昌治
    • Organizer
      微分幾何・トポロジーセミナー,慶應義塾大学
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Positive flow-spines and contact 3-manifolds2018

    • Author(s)
      石川昌治
    • Organizer
      火曜トポロジーセミナー,東京大学
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 3次元多様体および3次元接触多様体の複雑度について2018

    • Author(s)
      石川昌治
    • Organizer
      東京女子大学トポロジーセミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] オープンブック分解のモノドロミーベクトル場のl-型フロースパインの構成2018

    • Author(s)
      石川昌治
    • Organizer
      第41回箱根セミナ(2018)
    • Related Report
      2018 Annual Research Report
  • [Presentation] 平面曲線特異点のミルナー束の shadowによる表示2018

    • Author(s)
      石川昌治
    • Organizer
      金沢大学・学習院大学合同トポロジーセミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Singularity at infinity of real polynomial maps of two variables2018

    • Author(s)
      石川昌治
    • Organizer
      The 13th Kagoshima Algebra-Analysis-Geometry Seminar
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stable maps and branched shadows of 3-manifolds2016

    • Author(s)
      石川昌治
    • Organizer
      III International Conference "Quantum Topology"
    • Place of Presentation
      Steklov Mathematical Institute, ロシア
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 多項式写像の無限遠の特異点とニュートン図形2016

    • Author(s)
      石川昌治
    • Organizer
      トポロジー金曜セミナー
    • Place of Presentation
      九州大学
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] The bifurcation set of a real polynomial function from a viewpoint of toric compactification2016

    • Author(s)
      石川昌治
    • Organizer
      談話会
    • Place of Presentation
      VIASM, ベトナム
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] The bifurcation set of a real polynomial function from a viewpoint of toric compactification2016

    • Author(s)
      石川昌治
    • Organizer
      談話会
    • Place of Presentation
      ダラット大学, ベトナム
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi