• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An interpretation of finite type invariants from the viewpoint of the topology of embedding spaces

Research Project

Project/Area Number 16K05144
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionShinshu University

Principal Investigator

Sakai Keiichi  信州大学, 学術研究院理学系, 准教授 (20466824)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords埋め込みの空間 / グラフ / 配置空間 / オペラッド / L無限代数 / Haefliger不変量 / 埋め込みの空間の位相幾何学 / グラフ複体 / Lie環のコホモロジー / 双対構成 / 埋め込みのなす空間 / 分類空間 / 群完備化 / 幾何学的トポロジー / 代数的トポロジー / 配置空間積分 / ジェネリック平面曲線 / 有限型不変量 / ループ空間
Outline of Final Research Achievements

I have studied the space of long embeddings between Euclidean spaces from the viewpoint of topology. One of the most important results that I have obtained in the duration is the characterization of the classifying space of the space of long knots (i.e. 1-dimensional embeddings) as the space of "short ropes". This is joint work with Syunji Moriya (Osaka Prefecture University). Other results include the construction of the cohomology classes of the space of long embeddings using L-infinity algebras and a geometric methods inspired by the "configuration space integrals".

Academic Significance and Societal Importance of the Research Achievements

Short ropeを用いたlong knotの空間の分類空間の特徴づけはMostovoyによる予想の肯定的解決である.結果自体はもちろん重要であるが,証明に用いた手法はGalatiusとRandal-Williamsらが「コボルディズム圏」の研究に使ったものであり,具体的な問題への応用の可能性を示したという意味でも意義深い.また数学にとどまらず諸分野への応用が期待される「結び目理論」について,本研究成果は1つの拡張として"short ropeの族の分類"を考えることの意味を与えており,その点でも重要である.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (15 results)

All 2019 2018 2017 2016 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (10 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results) Remarks (2 results)

  • [Journal Article] Generalized connected sum formula for the Arnold invariants of generic plane curves2019

    • Author(s)
      Keiichi Sakai, Ryutaro Sugiyama
    • Journal Title

      Topology and its Applications

      Volume: 255 Pages: 86-108

    • DOI

      10.1016/j.topol.2018.12.010

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The space of short ropes and the classifying space of the space of long knots2018

    • Author(s)
      Syunji Moriya, Keiichi Sakai
    • Journal Title

      Algebraic and Geometric Topology

      Volume: 18 Issue: 5 Pages: 2859-2873

    • DOI

      10.2140/agt.2018.18.2859

    • NAID

      120007173398

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The space of short ropes and the classifying space of the space of long knots2018

    • Author(s)
      Syunji Moriya and Keiichi Sakai
    • Journal Title

      Algebraic and Geometric Topology

      Volume: 印刷中

    • NAID

      120007173398

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Lin-Wang type formula for the Haefliger invariant2019

    • Author(s)
      Keiichi Sakai
    • Organizer
      Spaces of Embeddings: Connections and Applications
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] L-infinity algebras and graph cocycles2019

    • Author(s)
      境圭一
    • Organizer
      ホモトピー論シンポジウム2019
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Lin-Wang type formula for Haefliger's invariant2018

    • Author(s)
      境 圭一
    • Organizer
      トポロジー金曜セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] The space of short ropes and the classifying space of the space of long knots2018

    • Author(s)
      境 圭一
    • Organizer
      第65回トポロジーシンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] The space of short ropes and the classifying space of the space of long knots2017

    • Author(s)
      Keiichi Sakai
    • Organizer
      The 59th Cascade Topology Seminar
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The space of short ropes and the classifying space of the space of long knots2017

    • Author(s)
      境 圭一
    • Organizer
      東京大学トポロジー火曜セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] The space of short ropes and the classifying space of the space of long knots2017

    • Author(s)
      境 圭一
    • Organizer
      京都大学代数トポロジーセミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] The space of short ropes and the classifying space of the space of long knots2017

    • Author(s)
      境 圭一
    • Organizer
      信州トポロジーセミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Generic閉曲線の一般化された連結和に対するArnold不変量の公式2017

    • Author(s)
      境 圭一
    • Organizer
      日本数学会2017年度秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] The space of short ropes and the classifying space of the space of long knots2016

    • Author(s)
      境 圭一
    • Organizer
      研究集会「結び目の数学IX」
    • Place of Presentation
      日本大学理学部
    • Year and Date
      2016-12-22
    • Related Report
      2016 Research-status Report
  • [Remarks] Website of Keiichi Sakai

    • URL

      http://math.shinshu-u.ac.jp/~ksakai/index_j.html

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
  • [Remarks] Webpage of Keiichi Sakai

    • URL

      http://math.shinshu-u.ac.jp/~ksakai/index.html

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi