• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Various invariants of 3 and 4-manifolds and their applicationsUe

Research Project

Project/Area Number 16K05146
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

Ue Masaaki  京都大学, 理学研究科, 教授 (80134443)

Co-Investigator(Kenkyū-buntansha) 加藤 毅  京都大学, 理学研究科, 教授 (20273427)
藤井 道彦  琉球大学, 理学部, 教授 (60254231)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords4次元多様体 / 3次元多様体 / Seiberg-Witten理論 / Floerホモロジー / ザイフェルト多様体 / 3次元多様体 / ゲージ理論 / ザイフェルト3次元多様体 / Heegaard Floerホモロジー / 低次元トポロジー / 4次元多様体
Outline of Final Research Achievements

We investigated the relation between invariants of 3-manifolds (in particular Seifert rational homology 3-spheres) which are defined combinatorially and those coming from gauge theories. These invariants are homology cobordism invariants, but other properties of them are mutually different. We heed further research about the relations between newly developed invariants and known results.
We almost completed writing the textbook about 4-dimensional topology written in Japanese, which includes
newly developed results about 4-manifolds as well as our own research results.

Academic Significance and Societal Importance of the Research Achievements

3次元多様体のホモロジーコボルディズム不変量は近年活発に研究されており,その研究をさらに発展させることは,4次元トポロジー,特に境界付き4次元多様体の性質の解明にとって有用である.
また4次元トポロジーの教科書は基礎理論から類書にない近年の研究結果までを含んでおり,この分野の研究を総合的に知る上で有用なものになることが期待される.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results)

  • [Journal Article] Induced map on K theory for certain Gamma-equivariant maps between Hilbert spaces2020

    • Author(s)
      T. Kato
    • Journal Title

      Journal of non commutative geometry

      Volume: ー

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] Some development of Seiberg-Witten theory and related topics2019

    • Author(s)
      T. Kato
    • Organizer
      Soton-Kyoto workshop2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Seiberg-Witten理論周辺の応用と発展2019

    • Author(s)
      T. Kato
    • Organizer
      幾何学シンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] A rigidity theorem of the Z_2 valued Seiberg-Witten invariants for spin families2019

    • Author(s)
      T. Kato
    • Organizer
      Index Theory, Duality and Related Fields
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Twisted Donaldson invariant2019

    • Author(s)
      T. Kato
    • Organizer
      K-theory and Noncommutative Geometry
    • Related Report
      2019 Annual Research Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi