Orderings in 3-manifold groups
Project/Area Number |
16K05149
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Hiroshima University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 不変順序 / 3次元多様体 / 共役ねじれ元 / 正規生成元 / 正規閉包 / デーン手術 / 結び目群 / トポロジー / 結び目 / 3次元多様体 / 基本群 / 順序構造 |
Outline of Final Research Achievements |
We proposed a conjecture which claims that a 3-manifold group is not bi-orderable if and only if it admits a generalized torsion element. Although this is still open, we solved it for various families of 3-manifolds such as Seifert fibered manifolds. As a byproduct, we found a way to construct generalized torsion elements for Fibonacci groups and their generalizations. Also, we studied the normal closures of slope elements in knot groups and their inclusion relation.
|
Academic Significance and Societal Importance of the Research Achievements |
低次元トポロジーにおいて,最も注目されているのは3次元多様体といっても過言ではない.本研究では,3次元多様体の基本群に注目し,群論的な問題に対してトポロジーの成果を用いて取り組んだ.へガード・フロア理論からの要請もあって,基本群が許容する不変順序の研究は喫緊の課題であり,引き続き国内外における研究継続が望まれる.
|
Report
(5 results)
Research Products
(14 results)