• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of toric topology

Research Project

Project/Area Number 16K05152
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionOsaka City University

Principal Investigator

Masuda Mikiya  大阪市立大学, 大学院理学研究科, 教授 (00143371)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsトーリック多様体 / ヘッセンバーグ多様体 / 凸多面体 / トーラス群作用 / 同変コホモロジー / 旗多様体 / トーラス軌道 / シューベルト多様体 / 置換群 / トーリック幾何 / コホモロジー剛性問題 / Hessenberg variety / 双曲多様体 / トーリックトポロジー / 組合せ論
Outline of Final Research Achievements

I studied geometry and topology of torus actions and related combinatorics. In particular I have obtained the following results.
(1) Convex polytopes which can be realized as right angle polytopes in the 3-dimensional hyperbolic space are called Pogorelov polytopes and small covers over them become hyperbolic 3-manifolds. We have shown that they can be distinguished by their Z/2-cohomology rings. (2) We have shown that the cohomology rings of regular nilpotent Hessenberg varieties are isomorphic to rings obtained from logarithmic derivations on hyperplane arrangements and extended known results on the cohomology rings for type A to any Lie type. (3) We have classified toric manifolds over an n-cube with one vertex cut.

Academic Significance and Societal Importance of the Research Achievements

(1)3次元双曲多様体は、Mostow剛性により基本群で区別できるが、Loebell type の双曲多様体に限れば、基本群よりずっと弱い不変量であるZ/2係数コホモロジー環で区別できることを示したのは、特筆すべき結果と思う。(2)Regular nilpotent Hessenberg varietyのコホモロジー環と超平面配置を結びつけたのは驚く結果と思う。(3)分類結果の副産物として、射影的代数多様体の構造と非射影的代数多様体の構造の両方をもつ微分可能多様体が、トーリック多様体の範疇に存在することが分かったことは新しい知見である。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (17 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (4 results) Journal Article (6 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 6 results,  Acknowledgement Compliant: 3 results) Presentation (7 results) (of which Int'l Joint Research: 7 results,  Invited: 7 results)

  • [Int'l Joint Research] Ajou University/KAIST/IBS(韓国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] マクマスター大学(カナダ)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Moscow State University/Steklov Institute, Moscow(ロシア連邦)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] 南京大学(中国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] THE COHOMOLOGY RINGS OF REGULAR SEMISIMPLE HESSENBERG VARIETIES FOR h = (h(1),n,...,n)2019

    • Author(s)
      H. Abe, T. Horiguchi, M. Masuda
    • Journal Title

      J. Comb.

      Volume: 17 Issue: 01 Pages: 1-24

    • DOI

      10.4310/joc.2019.v10.n1.a2

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016856

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] THE COHOMOLOGY RINGS OF REGULAR NILPOTENT HESSENBERG VARIETIES IN LIE TYPE A2018

    • Author(s)
      Hiraku Abe, Megumi Harada, Tatsuya Horiguchi, Mikiya Masuda
    • Journal Title

      International Mathematics Research Notices

      Volume: 16 Issue: 05 Pages: 1-52

    • DOI

      10.1093/imrn/rnx275

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016845

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] CLASSIFICATION OF REAL BOTT MANIFOLDS AND ACYCLIC DIGRAPHS2017

    • Author(s)
      Suyoung Choi, Mikiya Masuda, Sang-il Oum
    • Journal Title

      Transaction of American Mathematical Society

      Volume: 10 Issue: 06 Pages: 1-25

    • DOI

      10.1090/tran/6896

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016736

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Torsion in the cohomology of torus orbifolds2017

    • Author(s)
      Hideya Kuwata, Mikiya Masuda, Haozhi Zeng
    • Journal Title

      Chinese Annals of Mathematics

      Volume: 未定

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes2017

    • Author(s)
      V. Buchstaber, N. Erokhovets, M. Masuda, T. Panov, S. Park
    • Journal Title

      Uspekhi Mat. Nauk

      Volume: 72 Issue: 2(434) Pages: 3-66

    • DOI

      10.4213/rm9759

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Volume polynomials and duality algebras of multi-fans2016

    • Author(s)
      Anton Ayzenberg, Mikiya Masuda
    • Journal Title

      Arnold Mathematical Journal

      Volume: 15 Issue: 11 Pages: 1-45

    • DOI

      10.1007/s40598-016-0048-4

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016838

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Generic torus orbit closures in Schubert varieties2018

    • Author(s)
      Mikiya Masuda
    • Organizer
      Algebraic Topology, Combinatorics, and Mathematical Physics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Cohomological rigidity problems in toric topology2018

    • Author(s)
      Mikiya Masuda
    • Organizer
      Glances@Manifolds III
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The cohomology rings of regular semisimple Hessenberg varieties for $h=(h(1),n,\ldpts,n)$2018

    • Author(s)
      Mikiya Masuda
    • Organizer
      Hessenberg Varieties in Combinatorics, Geometry and Representation Theory, Banff
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Generic torus orbit closures in Schubert varieties2018

    • Author(s)
      Mikiya Masuda
    • Organizer
      Hyperplane arrangement
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Cohomology of Hessenberg varieties2018

    • Author(s)
      Mikiya Masuda
    • Organizer
      IBS workshop
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Volume polynomials of regular nilpotent Hessenberg varieties2017

    • Author(s)
      Mikiya Masuda
    • Organizer
      Princeton-Rider Workshop On the Homotopy Theory of Polyhedral Products
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cohomology of regular Hessenberg varieties2016

    • Author(s)
      Mikiya Masuda
    • Organizer
      Glances@Manifolds 2
    • Place of Presentation
      クラコフ(ポーランド)
    • Year and Date
      2016-08-09
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi