• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Canonical fundamental domains and holonomy representations for cone hyperbolic manifolds

Research Project

Project/Area Number 16K05153
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionOsaka City University

Principal Investigator

Akiyoshi Hirotaka  大阪市立大学, 大学院理学研究科, 准教授 (80397611)

Research Collaborator Sakuma Makoto  
Yamashita Yasushi  
Kanenobu Taizo  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords双曲幾何 / 錐多様体 / 基本領域 / 2橋結び目 / 穴あきトーラス / Ford領域 / Dirichlet領域 / 結び目 / 基本多面体 / 負曲率幾何 / 離散群 / 負曲率空間 / 低次元トポロジー / 結び目理論
Outline of Final Research Achievements

The aim of this project is to generalize Jorgensen's theory on punctured torus groups to cone hyperbolic structures, by carefully preparing basic theory on the deformation of cone hyperbolic structures. We established the concepts of Ford domains and compact closed convex cores for cone hyperbolic manifolds, and showed a kind of stability that Ford and Dirichlet domains have. As for coned torus manifolds, we obtained a deep understanding for Fuchsian and thin representations. We also obtained a numerical result which strongly suggests the existence of a way from coned tori to 2-bridge cone manifolds.

Academic Significance and Societal Importance of the Research Achievements

大部分の3次元多様体は双曲構造に支配される.また,双曲多様体は双曲空間の等長変換群の離散部分群と対応する.したがって,双曲等長変換の組が与えられたときに,それらが離散群を生成するかという問いは素朴ながら非常に重要な問題である.本研究ではこの問題へのアプローチとして,錐双曲構造を経由することで様々な2元生成群を「道」でつなぎ,さらに,標準的な基本領域の組み合わせ構造を特徴付けることで上記の基本的な問題への手がかりを与えることを目的としたものである.基本的な問題の完全解決には至っていないが,基礎理論の整備と新しい「道」の候補を発見したことは大きな前進である.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017 2016 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (10 results) (of which Int'l Joint Research: 2 results,  Invited: 10 results) Remarks (1 results)

  • [Journal Article] Thin representations for the one-cone torus group2018

    • Author(s)
      Hirotaka Akiyoshi
    • Journal Title

      Topology and its Applications

      Volume: 掲載決定(次欄「発行年」は掲載決定通知の年)

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] Dirichlet domains for figure-eight cone manifolds2019

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      The 14th East Asian Conference on Geometric Topology
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Ford and Dirichlet domains for cone hyperbolic manifolds2018

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      The 10th KOOK-TAPU Joint Seminar on Knots and Related Topics
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 8の字結び目から得られるいくつかの錐多様体の Dirichlet 領域2018

    • Author(s)
      秋吉宏尚
    • Organizer
      研究集会 「拡大 KOOK セミナー2018」
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] From one-cone tori to two-bridge cone manifolds2018

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      Topology and Geometry of Low-dimensional Manifolds
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Finiteness of Ford and Dirichlet domains for 3-dimensional cone hyperbolic manifolds2017

    • Author(s)
      秋吉宏尚
    • Organizer
      研究集会「拡大KOOKセミナー2017」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 3次元錐双曲多様体のフォード領域とディリクレ領域に関する実験2017

    • Author(s)
      秋吉宏尚
    • Organizer
      研究集会「トポロジーとコンピュータ 2017」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Thin representations for the one-cone torus group2017

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      The 2nd Pan-Pacific International Conference on Topology and Applications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 錐特異点つきトーラスの双曲構造の崩壊について2016

    • Author(s)
      秋吉宏尚
    • Organizer
      拡大 KOOK セミナー2016
    • Place of Presentation
      大阪電気通信大学(大阪府寝屋川市)
    • Year and Date
      2016-08-24
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Collapsing cone hyperbolic structures on the torus with a single cone point2016

    • Author(s)
      Hirotaka Akiyoshi
    • Organizer
      The 8th KOOK-TAPU Joint Seminar on Knots and Related Topics
    • Place of Presentation
      Pusan National University, Korea
    • Year and Date
      2016-07-28
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ford and Dirichlet domains for certain cone manifolds2016

    • Author(s)
      秋吉宏尚
    • Organizer
      離散群と双曲空間のトポロジーと解析
    • Place of Presentation
      京都大学数理解析研究所(京都府京都市)
    • Year and Date
      2016-06-22
    • Related Report
      2016 Research-status Report
    • Invited
  • [Remarks] 研究集会「錐多様体と基本領域」

    • URL

      http://www.sci.osaka-cu.ac.jp/OCAMI/activities/symposium/2017/cone2018/cone2018.html

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi