• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Dimension theory and coarse geometry from the view point of embedding problems

Research Project

Project/Area Number 16K05160
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionWaseda University

Principal Investigator

Koyama Akira  早稲田大学, 理工学術院, 名誉教授 (40116158)

Project Period (FY) 2016-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords次元論 / コホモロジー次元論 / coarse幾何学 / 漸近次元 / coares幾何学 / asymptotic dimension / asymptotic次元 / 埋め込み / coarse幾何 / 群作用 / 幾何学的トポロジー / ANR理論 / 力学系 / シェイプ理論 / 埋蔵 / 局所連結性 / 位相幾何学 / ホモロジー論 / 局所単連結 / 次元 / Coarse幾何学 / 幾何学
Outline of Final Research Achievements

We investigated topological properties of ideal boundaries of geodesic spaces from the following two points of view. The first case is that the local homology groups of the boundary is trivial. The second case is that th e boundary has pathological complexity.
In the first case we suppose that the boundary should have similar properties to ANR. Related to this topics I published the joined paper with professor V. Valov (Nipissing University, Canada) from Topology and its Applications.
In the second case we suppose that cohomological dimension theory should be a key tool. Then we analized the classical example by Boltyanski and Kodama and succeeded to simplify the construction. We presented its process at he meeting at RIMS Institute for Mathematical Sciences Kyoto University, 2023, 06, 05 -07.

Academic Significance and Societal Importance of the Research Achievements

M. Gromowが幾何学的群論の新しい攻略法として提唱したcoarse幾何学では測地線空間の理想境界の位相的性質を調べることが重要になる。特に幾何的に解明可能が難しい場合の研究はそれほど進んでいない。本研究はそのような場合に有効と考えられるコホモロジー次元論からの研究とホモロジー論的なANR理論の開発を提唱した. 現段階ではブレイクスルーを与えるまでに至っていないが, 取りかかりとしては着実な進歩を与えた.

Report

(9 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (17 results)

All 2024 2021 2019 2018 2017 Other

All Int'l Joint Research (8 results) Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results) Presentation (5 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results) Book (1 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Ben Grion University(イスラエル)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Nippising University(カナダ)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Univerisity of Tennessee(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] the Institute of Mathematics(ポーランド)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Nipissing University(カナダ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Nipissing University(Canada)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] ニピッシング大学(カナダ)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] テネシー大学(米国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] On homologically locally connected spaces2019

    • Author(s)
      Akira Koyama and Vesko Valov
    • Journal Title

      Topology and its Applications

      Volume: 260

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On homologically locally connected spaces2018

    • Author(s)
      Akira Koyama and Vesko Valov
    • Journal Title

      Topology and its Applications

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Algebraic ANR and related topics2019

    • Author(s)
      Akira Koyama
    • Organizer
      Geometric Topology - Celebrating the Year of Mathematics in Poland
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Algebraic ANR revised2019

    • Author(s)
      Akira Koyama
    • Organizer
      Conference on Geometric Topology and Related Topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Homological properties of decomposition spaces2019

    • Author(s)
      小山 晃
    • Organizer
      Building-up Differentiable Homotopy Theory
    • Related Report
      2018 Research-status Report
  • [Presentation] Homological properties of decomposition spaces2017

    • Author(s)
      Akira Koyama
    • Organizer
      Geometric Topology and Geometry of Banach Spaces, Eilat, Israel
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Homological properties of decomposition spaces2017

    • Author(s)
      Akira Koyama
    • Organizer
      The 2nd Pan Pacific International Conference on Topology and Applications, Pusan, Korea
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] 位相空間論2021

    • Author(s)
      小山晃
    • Total Pages
      288
    • Publisher
      森北出版
    • ISBN
      9784627078611
    • Related Report
      2020 Research-status Report
  • [Funded Workshop] 2024早稲田幾何学的トポロジー研究会2024

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi