• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Combinatorics study of zero-dimensional systems - beyond Bratteli-Vershik systems

Research Project

Project/Area Number 16K05185
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionNagoya Keizai University

Principal Investigator

Shimomura Takashi  名古屋経済大学, 経済学部, 教授 (30440770)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
KeywordsBratteli-Vershik system / zero-dimensional system / subshift / minimal / topological rank / residually scrambled / substitution subshift / graph covering method / Bratteli-Vershik model / graph covering / Li-Yorke chaos / residually scrambled set / 零次元系 / topological chaos / dynamical system / symbolic system
Outline of Final Research Achievements

My plan was to extend the case study of minimal homeomorphic zero-dimensional systems, and to construct chaotic cases.I could extend the notion of topological rank, showing that the natural extensions have no greater ranks. I could characterize substitution maps that create minimal subshifts. Rank 2 proximal Cantor systems were residually scrambled.
Apart from minimality, finite rank Bratteli-Vershik systems were expansive if they do not have odometers. More importantly, all homeomorphic zero-dimensional systems had non-trivial Bratteli-Vershik representation, including the basic sets.

Academic Significance and Societal Importance of the Research Achievements

組み合わせ論的零次元系の理論は,C*環のある程度計算可能な具体的議論として,とても重要なものです.何故なら,C*環の理論は,量子場の理論と深く関連しており,その量子場の理論はもはや研究の枠を越え,量子コンピュータの実現という,極めて重要な社会的目標を持つものだからです.
もっとも,私の研究成果は,基礎的なものに留まります.Bratteli--Vershik表現というものは,位相的ベルヌーイ系を含む,とてつもなく広大な零次元系達の class を,上記C*環の計算可能な構造と深く関連させることができるものです.私の研究は,このBratteli--Vershik表現についての,基礎的な考察です.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (14 results)

All 2019 2018 2017 2016 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 1 results,  Acknowledgement Compliant: 2 results) Presentation (7 results) Remarks (1 results)

  • [Journal Article] A simple approach to minimal substitution subshifts2019

    • Author(s)
      Takashi Shimomura
    • Journal Title

      Topology and its Applications

      Volume: 260 Pages: 203-214

    • DOI

      10.1016/j.topol.2019.04.009

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Rank 2 proximal Cantor systems are residually scrambled2018

    • Author(s)
      Takashi Shimomura
    • Journal Title

      Dynamical Systems

      Volume: 33 Issue: 2 Pages: 275-302

    • DOI

      10.1080/14689367.2017.1360251

    • Related Report
      2018 Annual Research Report 2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Topological rank does not increase by natural extension of Cantor minimals2017

    • Author(s)
      Takashi Shimomura
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 印刷中

    • NAID

      130006334238

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Finite-rank Bratteli-Vershik homeomorphisms are expansive2017

    • Author(s)
      Takashi Shimomura
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Combinatorial embedding of chain transitive zero-dimensional systems into chaos2016

    • Author(s)
      Takashi Shimomura
    • Journal Title

      Topology and its Applications

      Volume: 204 Pages: 230-239

    • DOI

      10.1016/j.topol.2016.03.014

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Zero-dimensional almost 1-1extensions of odometers from graph coverings2016

    • Author(s)
      Takashi Shimomura
    • Journal Title

      Topology and its Applications

      Volume: 209 Pages: 63-90

    • DOI

      10.1016/j.topol.2016.05.018

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Bratteli-Vershik 表現と basic sets2018

    • Author(s)
      下村 尚司
    • Organizer
      エルゴード理論とその周辺(於 大阪大学)
    • Related Report
      2018 Annual Research Report
  • [Presentation] Applications of the Bratteli-Vershik model for zero-dimensional homeomorphisms2018

    • Author(s)
      下村 尚司
    • Organizer
      日本数学会2018年度秋季総合分科会(於 岡山大学)
    • Related Report
      2018 Annual Research Report
  • [Presentation] Characterization of substitution map for minimal substitution subshifts2018

    • Author(s)
      下村 尚司
    • Organizer
      日本数学会2018年度秋季総合分科会(於 岡山大学)
    • Related Report
      2018 Annual Research Report
  • [Presentation] Topological rank does not increase by natural extension of Cantor minimals2017

    • Author(s)
      Takashi Shimomura
    • Organizer
      日本数学会2017年度秋季総合分科会(於 山形大学)
    • Related Report
      2017 Research-status Report
  • [Presentation] Proximal Cantor systems with topological rank 2 are residually scrambled2017

    • Author(s)
      Takashi Shimomura
    • Organizer
      日本数学会2017年度秋季総合分科会(於 山形大学)
    • Related Report
      2017 Research-status Report
  • [Presentation] 周期点を持つ有限ランク Bratteli-Vershik系の拡大性2016

    • Author(s)
      下村 尚司
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      関西大学
    • Related Report
      2016 Research-status Report
  • [Presentation] 零次元同相写像のBratteli--Vershik表現2016

    • Author(s)
      下村 尚司
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      関西大学
    • Related Report
      2016 Research-status Report
  • [Remarks] Works

    • URL

      https://sites.google.com/a/nagoya-ku.ac.jp/takashi-shimomura/

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi