Project/Area Number |
16K05185
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Nagoya Keizai University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | Bratteli-Vershik system / zero-dimensional system / subshift / minimal / topological rank / residually scrambled / substitution subshift / graph covering method / Bratteli-Vershik model / graph covering / Li-Yorke chaos / residually scrambled set / 零次元系 / topological chaos / dynamical system / symbolic system |
Outline of Final Research Achievements |
My plan was to extend the case study of minimal homeomorphic zero-dimensional systems, and to construct chaotic cases.I could extend the notion of topological rank, showing that the natural extensions have no greater ranks. I could characterize substitution maps that create minimal subshifts. Rank 2 proximal Cantor systems were residually scrambled. Apart from minimality, finite rank Bratteli-Vershik systems were expansive if they do not have odometers. More importantly, all homeomorphic zero-dimensional systems had non-trivial Bratteli-Vershik representation, including the basic sets.
|
Academic Significance and Societal Importance of the Research Achievements |
組み合わせ論的零次元系の理論は,C*環のある程度計算可能な具体的議論として,とても重要なものです.何故なら,C*環の理論は,量子場の理論と深く関連しており,その量子場の理論はもはや研究の枠を越え,量子コンピュータの実現という,極めて重要な社会的目標を持つものだからです. もっとも,私の研究成果は,基礎的なものに留まります.Bratteli--Vershik表現というものは,位相的ベルヌーイ系を含む,とてつもなく広大な零次元系達の class を,上記C*環の計算可能な構造と深く関連させることができるものです.私の研究は,このBratteli--Vershik表現についての,基礎的な考察です.
|