• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of explicit formulas and associated algebraic structures for Macdonald polynomials

Research Project

Project/Area Number 16K05186
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionHiroshima Institute of Technology (2017-2018)
Kagawa National College of Technology (2016)

Principal Investigator

Hoshino Ayumu  広島工業大学, 工学部, 准教授 (30598280)

Co-Investigator(Kenkyū-buntansha) 白石 潤一  東京大学, 大学院数理科学研究科, 准教授 (20272536)
Research Collaborator Noumi Masatoshi  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
KeywordsMacdonald 多項式 / Koornwinder 多項式 / matrix inversion / Koornwinder多項式 / Macdonald多項式 / Catalan数 / Kostka多項式 / Matrix inversion / 変形W代数 / 結晶基底 / Pieri公式 / カタラン数
Outline of Final Research Achievements

1.We constructed explicit formulas for the Koornwinder and Macdonald polynomials of type B, C and D with one column diagrams. We constructed combinatorial expressions for the Macdonald polynomials of type C and D. 2.We constructed explicit forms of transition matrices from the type C Macdonald polynomials to the type C monomial symmetric polynomials with one column diagrams by using b,q,t-deformations of Catalan numbers. 3.We constructed t-Kostka polnomials with one column diagrams of type B, C and D. 4.We constructed transition matrices in terms of certain degenerated polynomials for the Koornwinder polynomials. 5.We conjectured certain Pieri rules for the Macdonald polynomials of type C. 6.We constructed polyhedral realizations of crystal bases for the integrable highest weight modules of nonexceptional affine quantum algebras.

Academic Significance and Societal Importance of the Research Achievements

本研究では,一列型のKoornwinder多項式やB,C,D型Macdonald多項式の明示公式を構成し,また,一列型Koornwinder多項式のパラメータを特殊化した多項式間の遷移行列達をBressoudやKrattenthalerのmatrix inversionを用いて記述し,これらの遷移行列達が多項式の階数に依存しないことを発見した.この事実はA型以外のMacdonald多項式においては知られていない.また,応用として,Catalan数のb,q,t変形や一列型B,C,D型Kostka多項式のt-変形の具体的な表示を構成した.これらから,本研究成果は学術的に価値があると考えている.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (10 results)

All 2019 2018

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Macdonald Polynomials of Type Cn with One-Column Diagrams and Deformed Catalan Numbers2018

    • Author(s)
      Ayumu Hoshino, Jun'ichi Shiraishi
    • Journal Title

      SIGMA

      Volume: 14 Pages: 101-133

    • DOI

      10.3842/sigma.2018.101

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Kostka polynomials with one column diagrams of type B_n, C_n and D_n2019

    • Author(s)
      星野歩,白石潤一
    • Organizer
      日本数学会年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Macdonald polynomials of type C_n with One-Column Diagrams and Deformed Catalan Numbers2018

    • Author(s)
      Ayumu Hoshino and Jun'ichi Shiraishi
    • Organizer
      Symmetries and Integrability of Difference Equations (SIDE) 13
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Tableau formulas for one-row Macdonald polynomials of type C_n2018

    • Author(s)
      Ayumu Hoshino
    • Organizer
      Algebraic and Enumerative Combinatorics in Okayama
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 一列型C_n型Macdonald多項式と変形カタラン数2018

    • Author(s)
      星野歩
    • Organizer
      2018年度RIMS共同研究(公開型)「組合せ論的表現論の諸相」
    • Related Report
      2018 Annual Research Report
  • [Presentation] Matrix inversion for Koornwinder polynomials with one-column diagram2018

    • Author(s)
      星野歩,白石潤一
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 一列型C, D 型Macdonald 多項式の明示公式2018

    • Author(s)
      星野歩,白石潤一
    • Organizer
      日本数学会年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Tableau formulas for one-row Macdonald polynomials of type C_n2018

    • Author(s)
      星野歩
    • Organizer
      Algebraic and Enumerative Combinatorics in Okayama
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Tableau formulas for one-row Macdonald polynomials of type C_n2018

    • Author(s)
      星野歩
    • Organizer
      Descrete Mathematics (Wien University)
    • Related Report
      2017 Research-status Report
  • [Presentation] 一列型C,D型Macdonald多項式の明示公式2018

    • Author(s)
      星野歩
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi