• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Well-posedness for differential equations in metric spaces

Research Project

Project/Area Number 16K05199
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionShizuoka University

Principal Investigator

Tanaka Naoki  静岡大学, 理学部, 教授 (00207119)

Co-Investigator(Kenkyū-buntansha) 赤木 剛朗  東北大学, 理学研究科, 教授 (60360202)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsリプシッツ作用素半群 / 距離空間における勾配流 / 距離による消散条件 / 準線形理論 / 作用素半群の積公式 / 非整数階時間微分を含む発展方程式 / 変異解析 / 解の初期値に関する連続的依存性 / Kirchhoff 方程式 / 劣微分作用素 / 単調作用素 / 準線形作用素 / 勾配流 / 変分不等式 / 積公式 / 適切性 / mutational equation / WED functional / comparison function / quasi-linear equation / monotone operator / metric-like functional / semigroup of operators / doubly nonlinearity / subtangential condition / dissipativity condition / delay equation / transition / gradient flow / 解析学 / 実関数論 / 関数解析学 / 関数方程式論
Outline of Final Research Achievements

This research is based on the concept of the continuous dependence of solutions on initial data. The first purpose is to extend the study of the well-posedness for differential equations in Banach spaces to the study to express the dissipative structure of equations by metric-like functionals. The second purpose is to provide a new framework for well-posed theory that is beyond vector spaces, without compactness. The following topics were discussed: (1) Product formulas for semigroups of Lipschitz operators and its application to the approximate solvability of mixed problems of differential equations, (2) The general theory of evolution equations with fractional derivatives, (3) Mutational analysis by dissipativity in terms of a family of metrics, (4) Quasilinear theory without assuming that the domains of quasilinear operators are dense, (5) Product formulas for gradient flows in metric spaces and its application to gradient flows governed by perturbations of functionals.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は, コンパクト性条件を利用することなく, Aubin による変異解析(距離空間における微分方程式の適切性)を再構築した点, 射影を用いた交換子条件のもとで加藤理論を改良した点に特色があり, 汎用性の高い理論の構築, 距離空間における微分方程式の適切性の問題への新しい視点に繋がると考える。また, このような理論的な立場からだけでなく, 近年盛んに研究されるようになった時間微分の分数冪を含む非線形偏微分方程式の研究に対する基本的枠組みを提供できたことは, 実用的な立場からも, 当該分野だけでなく非線形偏微分方程式の分野においても, 一定の評価を得られると期待している。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (17 results)

All 2019 2018 2017 2016 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 2 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 3 results) Remarks (2 results)

  • [Journal Article] Evolution variational inequalities with growth conditions in metric spaces2019

    • Author(s)
      Naoki Tanaka
    • Journal Title

      Studia Mathematica

      Volume: 248 Issue: 2 Pages: 147-169

    • DOI

      10.4064/sm171224-23-5

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Approximation of abstract Cauchy problems for dissipative operators with respect to metric-like functionals2019

    • Author(s)
      Naoki Tanaka
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 480 Issue: 2 Pages: 123406-123406

    • DOI

      10.1016/j.jmaa.2019.123406

    • NAID

      120006729387

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Fractional flows driven by subdifferentials in Hilbert spaces2019

    • Author(s)
      Goro Akagi
    • Journal Title

      Israel Journal of Mathematics

      Volume: 234 Pages: 809-862

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Well-posedness for mutational equations under a general type of dissipativity conditions2018

    • Author(s)
      Yoshikazu Kobayashi and Naoki Tanaka
    • Journal Title

      Israel Journal of Mathematics

      Volume: 印刷中 Issue: 1 Pages: 1-33

    • DOI

      10.1007/s11856-018-1660-x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Abstract Cauchy problems for quasilinear operators whose domains are not necessarily dense or constant2017

    • Author(s)
      Toshitaka Matsumoto; Naoki Tanaka
    • Journal Title

      Nonlinear Anal.

      Volume: 162 Pages: 91-112

    • DOI

      10.1016/j.na.2017.06.013

    • NAID

      120006623752

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Well-posedness and flow invariance for semilinear functional differential equations governed by non-densely defined operators2017

    • Author(s)
      Hiroki Sano; Naoki Tanaka
    • Journal Title

      Differential Integral Equations

      Volume: 30 Pages: 695-734

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] An approximation theorem of Lax type for evolution operators of Lipschitz operators in a metric space2019

    • Author(s)
      Yoshikazu Kobayashi, Naoki Tanaka
    • Organizer
      International Conference on Optimization: Techniques and Applications
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Traveling wave dynamics for Allen-Cahn equations with non-decreasing constraints2019

    • Author(s)
      Goro Akagi
    • Organizer
      Chemotaxis and Nonlinear Parabolic Equations -In honor of Professor Takasi Senba on his 60th birthday-
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Lipschitz semigroups and mutational equations in metric spaces2018

    • Author(s)
      Yoshikazu Kobayashi, Naoki Tanaka
    • Organizer
      The Role of Metrics in the Theory of Partial Differential Equations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Remarks on semigroups of Lipschitz operators in a metric space2018

    • Author(s)
      Yoshikazu Kobayashi, Naoki Tanaka
    • Organizer
      The 6th Asian Conference on Nonlinear Analysis and optimization
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 距離空間における作用素半群と微分方程式2018

    • Author(s)
      田中直樹
    • Organizer
      日本数学会年会企画特別講演
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Dissipative evolution problems in metric spaces2017

    • Author(s)
      Yoshikazu Kobayashi
    • Organizer
      The 8th International Conference on Differential and Functional Differential Equations
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 半線形関数微分方程式に対する適切性とその応用2017

    • Author(s)
      佐野弘貴, 田中直樹
    • Organizer
      日本数学会年会
    • Place of Presentation
      首都大学東京南大沢キャンパス (東京都八王子市)
    • Related Report
      2016 Research-status Report
  • [Presentation] Evolution problems in metric spaces and dissipativity conditions2016

    • Author(s)
      Yoshikazu Kobayashi, Naoki Tanaka
    • Organizer
      The fifth Asian conference on Nonlinear Analysis and Optimization(NAO-Asia 2016)
    • Place of Presentation
      Toki Messe, Niigata Convention Center (Niigata)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Well-posedness for gradient flows in complete metric spaces2016

    • Author(s)
      Naoki Tanaka
    • Organizer
      Researches on isometries from various viewpoints, RIMS Workshop
    • Place of Presentation
      Research Institute for Mathematical Sciences, Kyoto University (Kyoto)
    • Related Report
      2016 Research-status Report
  • [Remarks] SURE(静岡大学学術リポジトリ)

    • URL

      https://shizuoka.repo.nii.ac.jp/

    • Related Report
      2019 Annual Research Report
  • [Remarks] 静岡大学教員データベース

    • URL

      https://tdb.shizuoka.ac.jp/RDB/public/

    • Related Report
      2017 Research-status Report 2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi