• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on complex analytical structure on Teichmuller space

Research Project

Project/Area Number 16K05202
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKanazawa University (2018-2019)
Osaka University (2016-2017)

Principal Investigator

Miyachi Hideki  金沢大学, 数物科学系, 教授 (40385480)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsタイヒミュラー空間 / リーマン面 / 双曲幾何学 / 多重ポテンシャル論 / ポアソン積分 / 多重グリーン関数 / 擬等角写像 / クライン群 / モジュライ空間 / 多重調和関数 / 多重調和測度 / ポアソン積分表示 / 極値的長さ / レビ形式 / 多重劣調和函数 / ベアス埋め込み / タイヒミュラー距離 / グリーン関数 / 複素解析学
Outline of Final Research Achievements

In this research, we study the complex analytical structure on Teichmuller space. Under the complex structure, Teichmuller space is the universal space of holomorphic families of Riemann surfaces. Holomorphic families of Riemann surface are important mathematical objects, for instance, in Complex geometry and Algebraic geometry. Holomorphic functions on Teichmuller space are thought of as holomorphic invariants for holomorphic families of Riemann surface. This research is recognized as a comprehensive investigation on holomorphic functions. The boundary values are formulated on ideal boundaries (i.e. the set of degenerations of Riemann surfaces), and we can state the Poisson integral formula for holomorphic functions (pluriharmonic functions) on Teichmuller space.

Academic Significance and Societal Importance of the Research Achievements

リーマン面の複素解析的変形の空間であるタイヒミュラー空間について研究している.この空間はほとんど全ての曲面の変形を記述する基礎的な空間であり,弦理論など物理の研究にも応用されている.正則族の理解には,族の正則的に依存する不変量が重要である.本研究ではそのような不変量を,空間の関数として認識して研究する.正則関数の理想境界における境界値を用いて,この研究における基本公式であるポアソン積分表示を得た.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (30 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (8 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 8 results,  Open Access: 2 results) Presentation (17 results) (of which Int'l Joint Research: 11 results,  Invited: 17 results) Remarks (3 results)

  • [Int'l Joint Research] Universite de Strasbourg(フランス)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] ニューヨーク市立大学(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Pluripotential theory on Teichm?ller space I: Pluricomplex Green function2019

    • Author(s)
      Miyachi Hideki
    • Journal Title

      Conformal Geometry and Dynamics of the American Mathematical Society

      Volume: 23 Issue: 13 Pages: 221-250

    • DOI

      10.1090/ecgd/340

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convergence of Teichuller deformations in the universal Teichmuller space2019

    • Author(s)
      Miyachi Hideki、Saric Dragomir
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 147 Issue: 11 Pages: 4877-4889

    • DOI

      10.1090/proc/14598

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A dynamical approach to the infinitesimal spaces of quasiconformal mappings2018

    • Author(s)
      Miyachi Hideki
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 147 Issue: 1 Pages: 215-227

    • DOI

      10.1090/proc/14243

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Action at Infinity of Quasi-isometries on Teichmuller Space and the Geometry of the Gromov Product2018

    • Author(s)
      Hideki Miyachi
    • Journal Title

      Handbook of Group Actions, Volume III, Advanced Lectures in Mathematics

      Volume: 40 Pages: 3-12

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Geometry of the Gromov product: Geometry at infinity of Teichmüller space2017

    • Author(s)
      Hideki Miyachi
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 69 Issue: 3 Pages: 995-1049

    • DOI

      10.2969/jmsj/06930995

    • NAID

      130005906731

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Extremal length functions are log-plurisubharmonic2017

    • Author(s)
      Miyachi Hideki
    • Journal Title

      Contemporary Mathematics

      Volume: 24 Pages: 225-250

    • DOI

      10.1090/conm/696/14024

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Une formule differentielle de la longueur extremale et ses applications2017

    • Author(s)
      Miyachi Hideki、Ohshika Ken’ichi
    • Journal Title

      Annales Mathematiques Blaise Pascal

      Volume: 24 Issue: 1 Pages: 115-133

    • DOI

      10.5802/ambp.366

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Null-set compactifications of Teichmuller spaces2017

    • Author(s)
      Alberge Vincent、Miyachi Hideki、Ohshika Ken’ichi
    • Journal Title

      Handbook of Teichmuller theory

      Volume: VI Pages: 71-94

    • DOI

      10.4171/161-1/4

    • ISBN
      9783037191613, 9783037196618
    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] タイヒミュラー空間の測地線の振る舞いについて2019

    • Author(s)
      宮地秀樹
    • Organizer
      関数論シンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Towards Complex analysis on Teichmueller space2019

    • Author(s)
      Hideki Miyachi
    • Organizer
      International Conference on Complex Analysis 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] タイヒミュラー空間における複素関数論および多重ポテンシャル論に向けて(2回講演)2019

    • Author(s)
      宮地秀樹
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Complex Analysis on Teichmuller space2019

    • Author(s)
      Hideki Miyachi
    • Organizer
      HAYAMA Symposium on Complex Analysis in Several Variables XXI
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Poisson integral formula for Teichmueller space2019

    • Author(s)
      Hideki Miyachi
    • Organizer
      Riemann surfaces and Teichmuller theory
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Toward Complex analysis on Teichmuller space2018

    • Author(s)
      Hideki Miyachi
    • Organizer
      RIMS 共同研究(公開型)『複素力学系研究とその発展』(Complex dynamical systems and related topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Toward Complex analysis with Thurston's theory2018

    • Author(s)
      Hideki Miyachi
    • Organizer
      New Trends in Teichmuller Theory and Mapping Class Groups
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Teichmuller theory and shear coordinates2018

    • Author(s)
      Hideki Miyachi
    • Organizer
      研究集会「モジュライ空間のシンプレクティック幾何」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Toward complex analysis on Teichmuller space2018

    • Author(s)
      宮地秀樹
    • Organizer
      日本数学会2017 年度年会, 幾何学分科会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Toward complex analysis on Teichmuller space2017

    • Author(s)
      宮地秀樹
    • Organizer
      2017年度多変数関数論冬セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Deformation of Riemann surfaces via affine deformations2017

    • Author(s)
      宮地秀樹
    • Organizer
      モジュライ空間の幾何学と可積分系
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] タイヒミュラー空間論の位相幾何学的側面と複素解析的側面の一意化に向けて2017

    • Author(s)
      宮地秀樹
    • Organizer
      第64回トポロジーシンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Towards complex analysis on Teichmuller space with Thurston's theory2017

    • Author(s)
      Hideki Miyachi
    • Organizer
      Geometry and physics, Dedicated to the memory of W.P.Thurston
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Deformation of singular flat structures from quadratic differentials and Riemann surfaces2017

    • Author(s)
      Hideki Miyachi
    • Organizer
      "Special Session on Geometric Function Theory and Related topics” (SS 19 A) , AMS Meeting #1129
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Extremal length geometry on Teichmuller space2016

    • Author(s)
      Hideki Miyachi
    • Organizer
      symposium on Differential Geometry/Teichmuller theory (in cooperation with American Mathematical Society, International Conference of The Indian Mathematics)
    • Place of Presentation
      Banaras Hindu University, Varanasi, India
    • Year and Date
      2016-12-17
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 極値的長さの幾何学,位相幾何学と複素解析学2016

    • Author(s)
      宮地秀樹
    • Organizer
      研究集会「リーマン面に関連する位相幾何学
    • Place of Presentation
      東京大学大学院 数理科学研究科 大講義室
    • Year and Date
      2016-09-05
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Levi forms of extremal length functions and the period matrices of ramified double coverings2016

    • Author(s)
      Hideki MIyachi
    • Organizer
      Workshop on Grothendieck-Teichmuller Theories
    • Place of Presentation
      Chern Institute of Mathematics, Nankai University, Tianjin, China
    • Year and Date
      2016-07-27
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] http://hidekimyc.html.xdomain.jp/

    • Related Report
      2019 Annual Research Report
  • [Remarks]

    • URL

      http://hidekimyc.html.xdomain.jp/index.html

    • Related Report
      2018 Research-status Report
  • [Remarks] 宮地 秀樹(Hideki Miyachi)

    • URL

      http://www.math.sci.osaka-u.ac.jp/~miyachi/index.html

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi