• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Renormalization group approach to non-Markov processes on fractals

Research Project

Project/Area Number 16K05210
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionTokyo Metropolitan University

Principal Investigator

Hattori Kumiko  東京都立大学, 理学研究科, 教授 (80231520)

Project Period (FY) 2016-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsフラクタル / ループ・イレーズド・ランダムウォーク / 自己反発ウォーク / 連続極限 / 平均変位の指数 / 時刻0付近の振舞い / 重複対数の法則 / ランダムフラクタル / ランダム・フラクタル / 非マルコフ過程 / 変位の指数 / ループ・イレーズド・ランダム・ウォーク / 自己回避ウォーク / ループ・イレーズドランダムウォーク / growth exponent / 確率論
Outline of Final Research Achievements

Hattori and Mizuno have invented the "erasing-larger-loops-first"(ELLF) method to construct a loop-erased random walk on the pre-Sierpinski gasket(SG). Hattori, Ogo and Otsuka applied this method to a family of self-repelling walks on the pre-SG, proved that the resulted walks have scaling limits and obtained some properties of the limit process. Hattori constructed a loop-erased random walk on the infinite pre-SG, obtained its exponent for the mean square displacement and proved a law of iterated logarithms. Hattori, Kurosawa, Nisijima constructed a loop-erased random walk on the random pre-branched Koch curve and proved the existence of the scaling limit, which turns out to be self-avoiding.

Academic Significance and Societal Importance of the Research Achievements

確率過程論の分野で、マルコフ過程に関しては多くの研究結果の蓄積があり、ほかの解析学の分野との関係もよく知られている.一方、未来の行動が現在の位置だけでなく過去の履歴に依存する非マルコフ過程に関する研究は、マルコフ過程に比べてはるかに少ない.例えば、次元の低い(過去の履歴が強く影響する)ユークリッド空間上の自己回避過程に関する厳密な結果はわずかしか知られていない。フラクタルは、自己相似性をもつために、次元が低いが、厳密な結果が得られる可能性がある.これは逆にユークリッド空間上の非マルコフ過程に関する洞察を与えると期待される.

Report

(7 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (10 results)

All 2022 2019 2018 2017 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (7 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results)

  • [Journal Article] Displacement exponent for loop-erased random walk on the Sierpinski gasket2019

    • Author(s)
      Kumiko Hattori
    • Journal Title

      Stochastic processes and their applications

      Volume: 120 Issue: 11 Pages: 4239-4268

    • DOI

      10.1016/j.spa.2018.11.021

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Displacement exponent for loop-erased random walk on the Sierpinski gakset2019

    • Author(s)
      Kumiko Hattori
    • Journal Title

      Stochastic Processes and their Applications

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpinski gasket2017

    • Author(s)
      K. Hattori, N. Ogo and T. Otsuka
    • Journal Title

      Discrete and Continuous Dynamical Systems Series S

      Volume: 10 Issue: 2 Pages: 289-311

    • DOI

      10.3934/dcdss.2017014

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] ランダム枝分かれコッホ曲線上でのLoop消しランダムウォーク2022

    • Author(s)
      黒澤哲生
    • Organizer
      日本数学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Displacement exponents for the loop-erased random walk on the Sierpinski gaskets2018

    • Author(s)
      Kumiko Hattori
    • Organizer
      Fractal Geometry and Stochastics 6
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Displacement exponents for loop-erased random walk on the Sierpinski gaskets2018

    • Author(s)
      服部久美子
    • Organizer
      岡山-広島 解析・確率論セミナー2018
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Displacement exponent for loop-erased random walk on the Sierpinski gasket2017

    • Author(s)
      服部久美子
    • Organizer
      SPA2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] A family of self-avoiding random walks interpolating the loop-erased random walk and the self-avoiding walk on the Sierpinski gasket2016

    • Author(s)
      大塚隆史
    • Organizer
      SEAMS School 2016: Topics in Stochastic Analysis
    • Place of Presentation
      ヨグヤカルタ(インドネシア)
    • Year and Date
      2016-08-05
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] A family of self-avoiding processes on a fractal2016

    • Author(s)
      服部久美子
    • Organizer
      Applied Probability Workshop
    • Place of Presentation
      イルリサット(デンマーク)
    • Year and Date
      2016-08-01
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] シェルピンスキー・ガスケット上の自己回避過程の族のくりこみ群の方法を用いた解析2016

    • Author(s)
      大塚隆史
    • Organizer
      東京確率論セミナー
    • Place of Presentation
      東京大学
    • Year and Date
      2016-05-30
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi