• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Characterization of hyperbolic operators with the coefficients of the principal part depending only on the time variable for which the Cauchy problem is well-posed

Research Project

Project/Area Number 16K05222
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of Tsukuba

Principal Investigator

Wakabayashi Seiichiro  筑波大学, 数理物質系(名誉教授), 名誉教授 (10015894)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords双曲型作用素 / コーシー問題 / C∞適切性 / 超局所解析 / 双曲型方程式 / 適切性 / 偏微分方程式
Outline of Final Research Achievements

In the preceding researches I obtained sufficient conditions of C∞ well-posedness of the Cauchy problem for higher-order hyperbolic operators with double characteristics satisfying the conditions that the coefficients of the principal parts are real analytic functions of the time variable. And I showed that these sufficient conditions are also necessary when the space dimension is less than 3 or the coefficients of the principal parts are semi-algebraic functions ( e.g., polynomials ) of the time variable.
I also considered the Cauchy problem for higher-order hyperbolic operators with triple characteristics whose coefficients are real analytic functions of the time variable. And I obtained similar results concerning the characterization of C∞ well-posedness.

Academic Significance and Societal Importance of the Research Achievements

双曲型作用素に対するコーシー問題の C∞適切性の特徴付けは、偏微分方程式論における主要なテーマの1つであり、これまでに多くの研究があるが、未だ満足のいく結果は得られていないのが現状である。報告者が、主部の係数が時間変数にのみに依存する特別な枠組みではあるが、2重特性的である場合に C∞適切性の特徴付けを与えたことは、今後のこの分野の研究・発展に貢献するものと期待される。また3重特性的な場合を扱うために、subprincipal symbol を一般化して、sub-sub-principal symbol を初めて定義して、係数が時間変数のみに依存する場合に、C∞適切性の特徴付けを与えた。

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (7 results)

All 2020 2019 2018 2017 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results) Remarks (1 results)

  • [Journal Article] On the Cauchy Problem for Hyperbolic Operators with Double Characteristics whose Principal Parts Have Time Dependent Coefficients2020

    • Author(s)
      Wakabayashi Seiichiro
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: 63 Issue: 3 Pages: 345-418

    • DOI

      10.1619/fesi.63.345

    • NAID

      130007948949

    • ISSN
      0532-8721
    • Year and Date
      2020-12-15
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Presentation] 係数が時間変数のみに依存する3階双曲型作用素に対する Cauchy 問題2020

    • Author(s)
      若林 誠一郎
    • Organizer
      第35回松山キャンプ
    • Related Report
      2019 Research-status Report
  • [Presentation] On the Cauchy problem for hyperbolic operators with triple characteristics whose coefficients depend only on the time variable2019

    • Author(s)
      若林 誠一郎
    • Organizer
      第12回ISAAC Conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 主部の係数が時間変数のみに依存する双曲型作用素について2019

    • Author(s)
      若林 誠一郎
    • Organizer
      第34回松山キャンプ(山口大学理学部)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 係数が時間変数のみに依存する3重特性的な双曲型作用素に対するコーシー問題2018

    • Author(s)
      若林 誠一郎
    • Organizer
      第33回松山キャンプ(山口大学理学部)
    • Related Report
      2017 Research-status Report
  • [Presentation] 主部の係数が時間変数のみに依存する2重特性的な双曲型作用素に対するコーシー問題 (II)2017

    • Author(s)
      若林 誠一郎
    • Organizer
      第32回松山キャンプ
    • Place of Presentation
      山口大学理学部(山口県山口市)
    • Year and Date
      2017-01-05
    • Related Report
      2016 Research-status Report
  • [Remarks] The Home Page of Wakabayashi, Seiichiro

    • URL

      http://www.math.tsukuba.ac.jp/~wkbysh/

    • Related Report
      2020 Annual Research Report 2019 Research-status Report 2018 Research-status Report 2017 Research-status Report 2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi