• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Developments in Geometric Analysis of the initial value problem for dispersive flow equation

Research Project

Project/Area Number 16K05235
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionKochi University

Principal Investigator

Onodera Eiji  高知大学, 教育研究部自然科学系理工学部門, 准教授 (70532357)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords高階分散型偏微分方程式 / 2重シュレーディンガー写像流 / 局所エルミート対称空間 / 時間局所解の一意存在 / 分散型偏微分方程式 / 幾何解析 / 時間局所解の存在と一意性 / 偏微分方程式 / 関数方程式論 / 幾何学
Outline of Final Research Achievements

A fourth-order nonlinear dispersive partial differential equation arises in mathematical physics, the solution of which is a curve flow on the two-dimensional unit sphere. In recent ten years, a geometric generalization of the physical model has been proposed.In particular, by the present researcher, local existence and uniqueness of a smooth solution to the initial value problem was established under the assumption that the solution is a closed curve flow on a compact Riemann surface with constant curvature. In this research, a new geometric generalization of the physical model was introduced. Moreover, local existence of a solution to the initial value problem was obtained under the assumption that the solution is a closed curve flow on a compact locally Hermitian symmetric space. In addition, the initial value problem for a fifth-order dispersive equation for curve flow on the sphere was also handled.

Academic Significance and Societal Importance of the Research Achievements

Ding-Wang(2018, Math.Z)により、リーマン多様体からケーラー多様体への写像流に対する幾何学的偏微分方程式が提案され、その解は(シュレーディンガー写像流の自然な高階版という意味で)一般化2重シュレーディンガー写像流と呼ばれる。本研究の4階の分散型方程式に対する成果は、写像流の定義域が1次元(つまり曲線流)という限定的設定化ではあるが、一般化2重シュレーディンガー写像流の存在を保証した初めての成果と言える。今後は解の一意性や空間高次元化に関する研究への進展が期待される。また、5階の分散型方程式に対する成果は、任意奇数階の分散型方程式の場合への拡張が期待される。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Products Report
  • Research Products

    (11 results)

All 2021 2020 2019 2018 2017 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (4 results) Remarks (2 results) Funded Workshop (1 results)

  • [Journal Article] A fifth-order dispersive partial differential equation for curve flow on the sphere2021

    • Author(s)
      Onodera Eiji、Yamasaki Haruka
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 503 Issue: 1 Pages: 125297-125297

    • DOI

      10.1016/j.jmaa.2021.125297

    • Related Report
      Products Report
    • Peer Reviewed / Open Access
  • [Journal Article] Local existence of a fourth-order dispersive curve flow on locally Hermitian symmetric spaces and its application2019

    • Author(s)
      Eiji Onodera
    • Journal Title

      Differential Geometry and its Applications

      Volume: 67 Pages: 101560-101560

    • DOI

      10.1016/j.difgeo.2019.101560

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Approximate Standard Deviation for Estimating the Accuracy of the GNSS-derived Plot Area.2018

    • Author(s)
      Matsuoka Masayuki、Onodera Eiji、Kawakami Toshitsugu、Takano Kazutaka、Kimura Yuzuru
    • Journal Title

      Journal of the Japanese Forest Society

      Volume: 100 Issue: 6 Pages: 193-200

    • DOI

      10.4005/jjfs.100.193

    • NAID

      130007588325

    • ISSN
      1349-8509, 1882-398X
    • Year and Date
      2018-12-01
    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A fourth-order dispersive flow equation for closed curves on compact Riemann surfaces2017

    • Author(s)
      Eiji Onodera
    • Journal Title

      The Journal of of Geometric Analysis

      Volume: 27 Issue: 4 Pages: 3339-3403

    • DOI

      10.1007/s12220-017-9808-1

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 閉リーマン面上の閉曲線流がみたす4階分散型偏微分方程式の初期値問題(I)2019

    • Author(s)
      小野寺栄治
    • Organizer
      研究集会「第1回 筑波 RCMS 解析学シンポジウム」, 沖縄県市町村自治会館
    • Related Report
      2018 Research-status Report
  • [Presentation] 閉リーマン面上の閉曲線流がみたす4階分散型偏微分方程式の初期値問題 (II)2019

    • Author(s)
      小野寺栄治
    • Organizer
      研究集会「第1回 筑波 RCMS 解析学シンポジウム」, 沖縄県市町村自治会館
    • Related Report
      2018 Research-status Report
  • [Presentation] A fourth-order dispersive flow of closed curves on a compact Riemann surface2019

    • Author(s)
      小野寺栄治
    • Organizer
      研究集会「第11回名古屋微分方程式研究集会」, 名古屋大学
    • Related Report
      2018 Research-status Report
  • [Presentation] A fourth-order dispersive flow of closed curves on a compact Riemann surface2018

    • Author(s)
      小野寺栄治
    • Organizer
      研究集会「微分方程式の総合的研究」, 京都大学
    • Related Report
      2018 Research-status Report
  • [Remarks]

    • URL

      http://www.math.kochi-u.ac.jp/onodera/index-e.html

    • Related Report
      2019 Annual Research Report
  • [Remarks]

    • URL

      http://www.math.kochi-u.ac.jp/onodera/

    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Naha Symposium on Spectral and Scattering Theory2020

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2025-03-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi