• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of traveling wave and interfacial dynamics in nonlinear diffusion equation

Research Project

Project/Area Number 16K05245
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionKyoto Sangyo University

Principal Investigator

Yagisita Hiroki  京都産業大学, 理学部, 教授 (80349828)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2019: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2018: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2017: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2016: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Keywords非線形現象 / 非線形解析学 / 非線形偏微分方程式 / 非線形解析 / 拡散方程式
Outline of Final Research Achievements

We studied the dynamics of traveling waves and interfaces with respect to parabolic equations that describe nonlinear diffusion phenomena. In particular, it is natural to think of the space in which traveling waves and curved states live as an infinite dimensional space, and as a result of studying such an infinite dimensional space, many infinite dimensional spaces and many finite dimensional spaces have been found. We found a universal structure to share, and in the process extracted a universal method of interpreting mathematical statements.

Academic Significance and Societal Importance of the Research Achievements

非線形系の拡散現象は、物理学、化学、生物学、さらに近年は金融工学上のモデル等、多くの分野で現れる。それらの中には、急激な状態変化が狭い領域に集中する界面と呼ばれる局在構造が出現して、この界面の示す振る舞いを理解することが非線形現象を解明する上での鍵になることが数多くある。本研究による成果は、そのような理解を可能にするための数学的な基礎の提供に資することが大いに期待できるものである。

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (2 results)

All 2021 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results)

  • [Journal Article] Finite-dimensional complex manifolds on commutative Banach algebras and continuous families of compact complex manifolds2019

    • Author(s)
      Yagisita Hiroki
    • Journal Title

      Complex Manifolds

      Volume: 6 Issue: 1 Pages: 228-264

    • DOI

      10.1515/coma-2019-0012

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 「部分関数を関数記号の解釈とする (広義の) 構造」の意味論,証明体系,完全性定理2021

    • Author(s)
      柳下浩紀
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi