• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Numerical analysis based on hyperfunction theory

Research Project

Project/Area Number 16K05267
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionThe University of Electro-Communications

Principal Investigator

Ogata Hidenori  電気通信大学, 大学院情報理工学研究科, 教授 (50242037)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords佐藤超函数 / 複素関数論 / 解析関数 / 数値積分 / 積分方程式 / Fourier変換 / 複素解析関数 / Hadamardの有限部分 / 第2種Fredholm型積分方程式 / 数値解析
Outline of Final Research Achievements

Hyperfunction theory is a theory of generalized functions which is based on complex function theory. Hyperfunction theory expresses singular functions, which is difficult to treat with in numerical computations, by analytic functions, and, therefore, it is expected to be applicable to numerical computations.
In this study, we dealt with numerical integration, integral equation and Fourier transform. We proposed a numerical integration method which gives desired integrals via complex integrations. We found that it converges exponentially and is efficient especially for integrals with power singularities. Numerical solution for integral equations is an application of this numerical integration method. Besides, we proposed a numerical method for Fourier transform by the analytic continuation of a complex analytic function given by Fourier-Laplace transform.

Academic Significance and Societal Importance of the Research Achievements

佐藤超函数論は当初、純粋数学における理論であった.同理論を応用数学分野に応用するという研究はあまりなされておらず.その意味で、佐藤超函数論を数値解析分野に応用するという本研究は画期的なものである.そして,佐藤超函数論が純粋数学における一分野にとどまるだけでなく,実用面においても十分役に立つものであることが示された.そして,数値解析の分野においても,佐藤超函数論という数学の一分野から新たな数値計算の道具がもたらされたと言える.
数学においては,当初は純粋な数学的興味から考え出された概念が,後に実学においても有用であることが示された例がいくつもある.本研究もその一つと言えよう.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (17 results)

All 2019 2018 2017 2016

All Journal Article (5 results) (of which Open Access: 3 results,  Peer Reviewed: 3 results) Presentation (12 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results)

  • [Journal Article] A numerical method of Fourier transform based on hyperfunction theory2018

    • Author(s)
      Hidenori Ogata
    • Journal Title

      ArXiv:1808.03460

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Numerical integration based on hyperfunction theory2018

    • Author(s)
      Ogata Hidenori、Hirayama Hiroshi
    • Journal Title

      Journal of Computational and Applied Mathematics

      Volume: 327 Pages: 243-259

    • DOI

      10.1016/j.cam.2017.06.018

    • NAID

      120006579081

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Numerical Analysis Based on the Hyperfunction Theory2017

    • Author(s)
      緒方 秀教
    • Journal Title

      Bulletin of the Japan Society for Industrial and Applied Mathematics

      Volume: 27 Issue: 4 Pages: 8-15

    • DOI

      10.11540/bjsiam.27.4_8

    • NAID

      130006594794

    • ISSN
      2432-1982
    • Year and Date
      2017-12-22
    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] 佐藤超函数論に基づく数値積分2017

    • Author(s)
      緒方秀教
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2037 Pages: 57-60

    • Related Report
      2017 Research-status Report
    • Open Access
  • [Journal Article] Hyperfunction Method for Numerical Integrations2016

    • Author(s)
      緒方秀教・平山弘
    • Journal Title

      Transactions of the Japan Society for Industrial and Applied Mathematics

      Volume: 26 Issue: 1 Pages: 33-43

    • DOI

      10.11540/jsiamt.26.1_33

    • NAID

      110010042555

    • ISSN
      2424-0982
    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 佐藤超函数のフーリエ変換の数値計算法2019

    • Author(s)
      緒方秀教
    • Organizer
      日本応用数理学会研究部会連合発表会
    • Related Report
      2018 Annual Research Report
  • [Presentation] A numerical analytic continuation and its application to Fourier transform2018

    • Author(s)
      Hidenori Ogata
    • Organizer
      ApplMath18 (Ninth Conference on Applied Mathematics and Scientific Computing)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 連分数を用いた数値解析接続とFourier変換への応用2018

    • Author(s)
      緒方秀教
    • Organizer
      日本応用数理学会2018年度年会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 佐藤超函数論と数値解析への応用2018

    • Author(s)
      緒方秀教
    • Organizer
      常微分方程式の数値解法とその周辺2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] Numerical Fourier transform based on hyperfunction theory2018

    • Author(s)
      Hidenori Ogata
    • Organizer
      ECMI2018 (The 20th European Conference on Mathematics and Industry)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 佐藤超函数論に基づくフーリエ変換の数値計算法2017

    • Author(s)
      緒方秀教
    • Organizer
      日本応用数理学会2018年研究部会連合発表会
    • Related Report
      2017 Research-status Report
  • [Presentation] 非整数次べき的特異性をもつHadamard有限部分積分に対する超函数法2017

    • Author(s)
      緒方秀教
    • Organizer
      応用数学合同研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] 第2種Fredholm積分方程式に対する超函数法2017

    • Author(s)
      緒方秀教
    • Organizer
      日本応用数理学会年会
    • Related Report
      2017 Research-status Report
  • [Presentation] Hyperfunction method for numerical integration and Fredholm integral equations of the second kind2017

    • Author(s)
      Hidenori Ogata
    • Organizer
      Computational Methods and Function Theory
    • Related Report
      2017 Research-status Report
  • [Presentation] Hadamard有限部分積分に対する超函数法2016

    • Author(s)
      緒方秀教
    • Organizer
      日本応用数理学会2016年度年会
    • Place of Presentation
      北九州国際会議場(福岡県北九州市)
    • Year and Date
      2016-09-12
    • Related Report
      2016 Research-status Report
  • [Presentation] Numerical integration based on the hyperfunction theory2016

    • Author(s)
      Hidenori Ogata
    • Organizer
      The 6th China-Japan-Korea Joint Conference on Numerical Analysis
    • Place of Presentation
      NIMS, Daejeon, Korea
    • Year and Date
      2016-08-22
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] An application of the hyperfunction theory to numerical integration2016

    • Author(s)
      Hidenori Ogata and Hiroshi Hirayama
    • Organizer
      ECMI2016 (The 19th European Conference on Mathematics for Industry)
    • Place of Presentation
      Santiago de Compostela, Spain
    • Year and Date
      2016-06-13
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi