• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hidden symmetry of spacetime and Einstein metric

Research Project

Project/Area Number 16K05332
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Particle/Nuclear/Cosmic ray/Astro physics
Research InstitutionSetsunan University

Principal Investigator

Yasui Yukinori  摂南大学, 理工学部, 教授 (30191117)

Research Collaborator HOURI TSUYOSHI  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsキリングテンソル場 / ブラックホール / キリング・矢野対称性 / 変数分離性 / キリングテンソル / 平行切断 / キリング対称性 / ヤング図 / アインシュタイン計量
Outline of Final Research Achievements

Killing tensor fields have been thought of as describing hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved spaces and spacetimes, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. We show the prolongation for the Killing equation in a manner that uses Young symmetrizers. The prolonged equations can be viewed as the equations for parallel sections of the vector bundle, whose fibre is the space of differential forms. Using these equations, we provide the integrability conditions explicitly.

Academic Significance and Societal Importance of the Research Achievements

キリング方程式の可積分条件を調べる研究は長い歴史を持つ。しかしながら,これまでに得られている結果は非常に複雑なものであり,大がかりなコンピュータ計算を行わない限り時空上にキリングテンソルが存在するかどうかを判定することは難しい。本研究では,キリング方程式を延長することにより,時空の曲率テンソルを使って可積分条件を陽に表すことに成功した。これにより,キリングテンソルの存在条件は,「ヤング図形から定まる曲率テンソル=0」という方程式と同値になる。この結果は,キリング方程式の可積分条件を簡単かつ明瞭に表現しており,多くの力学系への応用が期待できる。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (11 results)

All 2019 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (10 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Journal Article] On integrability of the Killing equation2018

    • Author(s)
      Tsuyoshi Houri, Kentaro Tomoda, Yukinori Yasui
    • Journal Title

      Classical and Quantum Gravity

      Volume: 35 Issue: 7 Pages: 075014-075014

    • DOI

      10.1088/1361-6382/aaa4e7

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 一般相対論の数理:時空の隠れた対称性2019

    • Author(s)
      安井幸則
    • Organizer
      日本物理学会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] A Killing-Yano ansatz for gravitational perturbations on a Myers-Perry black hole2019

    • Author(s)
      宝利剛,棚橋典大,安井幸則
    • Organizer
      日本物理学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 時空の隠れた対称性2019

    • Author(s)
      安井幸則
    • Organizer
      The 2nd Workshop on Mathematical and Physics in General Relativity
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Kerr時空を背景時空とするMaxwell方程式の変数分離性について2018

    • Author(s)
      宝利剛,棚橋典大,安井幸則
    • Organizer
      日本物理学会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Prolongation of the Killing equation via the Young symmetriser2017

    • Author(s)
      友田健太郎 宝利剛 安井幸則
    • Organizer
      日本物理学会
    • Place of Presentation
      大阪大学豊中キャンパス(大阪府)
    • Year and Date
      2017-03-22
    • Related Report
      2016 Research-status Report
  • [Presentation] On integrability of the Killing equation2017

    • Author(s)
      Tsuyoshi Houri, Kentaro Tomoda, Yukinori Yasui
    • Organizer
      Finite dimensional integrable system in geometry and mathematical physics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] キリング方程式の可積分条件2017

    • Author(s)
      宝利剛,友田健太郎,安井幸則
    • Organizer
      日本応用数学会
    • Related Report
      2017 Research-status Report
  • [Presentation] 正準幾何学による古典可積分性の判定2017

    • Author(s)
      宝利剛,友田健太郎,安井幸則
    • Organizer
      日本物理学会
    • Related Report
      2017 Research-status Report
  • [Presentation] Integrability condition of Killing-Stakell tensors2016

    • Author(s)
      友田健太郎 宝利剛 安井幸則
    • Organizer
      日本物理学会
    • Place of Presentation
      宮崎大学木花キャンパス(宮崎県)
    • Year and Date
      2016-09-22
    • Related Report
      2016 Research-status Report
  • [Presentation] キリング・矢野対称性とアインシュタイン計量2016

    • Author(s)
      安井幸則
    • Organizer
      五色浜相対論研究会
    • Place of Presentation
      兵庫県洲本市五色町ウェル五色浜リゾートセンター
    • Year and Date
      2016-09-08
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi