Project/Area Number |
16K05459
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Condensed matter physics II
|
Research Institution | Chuo University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 有機導体 / 量子スピン液体 / 光誘起相転移 / 動的局在 / 非線形同期振動 / 逆ファラデー効果 / キタエフ量子スピン液体 / α-RuCl3 / 3軌道ハバード模型 / スピン軌道相互作用 / スピン軌道励起子 / フロケ理論 / 有効磁場 / 非線形電荷振動 / 誘導放出 / 二量体構造 / クーロン相互作用 / 同期現象 / 同期機構 / 電子ブリージング / 有機超伝導 / 第二高調波発生 / 空間反転対称性 / キャリアエンベロープ位相 / 電子対ブリージング / 光誘起電荷秩序 / 高周波数展開 / 三量体構造 / 光誘起電子運動凍結 / 鏡映対称性 / 物性理論 / 光物性 / 強相関電子系 |
Outline of Final Research Achievements |
For organic conductors with α-type structure, it is shown that photoinduced transient charge order requires not only dynamical localization that suppresses electronic mobility but also electron-electron interactions that compete with the electronic mobility. For organic conductors with κ-type dimerized structure, after strong photoexcitation that produces large charge disproportionation, charge oscillations are synchronized through electron-electron interactions, and a stimulated emission occurs. The mechanism is clarified through numerical simulations and an analysis of equations of charge motion. Furthermore, for a multi-orbital electron system on a honeycomb lattice that exhibits a quantum-spin-liquid state, the inverse Faraday effect is observed, where a circularly polarized light field produces magnetization perpendicular to the lattice. This fact is demonstrated by calculations of photoinduced magnetization dynamics, and its origin is clarified by quantum Floquet theory.
|
Academic Significance and Societal Importance of the Research Achievements |
強い光をとても短い時間だけ物質に照射することで起きる変化を理論的に示した。そのうち空間反転対称性を破るもの(過渡的に電荷分極をつくるもの)と時間反転対称性を破るもの(過渡的に磁化をつくるもの)は実現している。用いたエネルギー(あるいは振動数)の光では直接的に電子を動かし、上述の巨視的変化はともに電子が隣の原子に移動する程度の時間内で超高速に起きている。このように、多数の電子を一斉にかつ直接的に操作する方法とその帰結を、量子多体理論から明らかにし、共同研究により実証した。
|