Elucidation of degradation mechanism of perovskite solar cells using low temperature solution process
Project/Area Number |
16K06285
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Electronic materials/Electric materials
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
Shirai Yasuhiro 国立研究開発法人物質・材料研究機構, エネルギー・環境材料研究拠点, 主幹研究員 (40465969)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 太陽電池 / ペロブスカイト / 耐久性 / 低温プロセス / ペロブスカイト太陽電池 / 寿命 / タンデム / NiO / 低温 / 劣化メカニズム |
Outline of Final Research Achievements |
In this research, we aimed to realize a perovskite material that exhibits the same excellent durability as a Si-based cell, by which a high efficiency two-terminal tandem solar cell can be constructed in the future by the configuration of a Si-based bottom cell / perovskite top cell. Specifically, we promoted technology development to realize high-efficiency, high-durability perovskite solar cells using low-temperature solution processes. Perovskite solar cells have many excellent properties as top cell materials, but there is little knowledge about the most important durability, and they need to be resolved as soon as possible. In addition, a durable perovskite solar cell often requires a high temperature process of about 500 degree-C in many cases, and there may be a problem in the construction of a tandem structure.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、新規インターフェース材料の開発と低温プロセスによるペロブスカイト結晶化の新規手法により、高い耐久性を示すペロブスカイト太陽電池の開発に成功した。 これまでに塩素を添加する相互拡散法(Cl-mediated interdiffusion method)、及び塩化メチルアンモニウム(MACl)雰囲気中で成膜する手法により、1000時間以上の連続発電が可能な耐久性を示す素子を作製できた。また、暗状態の耐熱試験(85℃1000時間)においても、初期値の90%超の効率を維持する事が判明した。これらの成果は、ペロブスカイト太陽電池の社会実装において重要な信頼性の向上に貢献するものである。
|
Report
(4 results)
Research Products
(7 results)