Experimental investigation on mechanical behavior of rubber materials and its modeling
Project/Area Number |
16K06465
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Structural engineering/Earthquake engineering/Maintenance management engineering
|
Research Institution | University of Yamanashi |
Principal Investigator |
YOSHIDA Junji 山梨大学, 大学院総合研究部, 准教授 (90345695)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | ゴム材料 / 免震構造 / 積層ゴム支承 / 構成則 / 材料試験 / 多軸材料試験 / 温度依存性 / 構成モデル / ゴム / 力学特性 / 多軸変形 / 応力-ひずみ関係 / 速度依存性 / 温度制御 / 免震・制振装置 / 多軸載荷 / 数値計算 |
Outline of Final Research Achievements |
In this research, we have conducted several material tests, in order to understand multi-axial behavior of rubber materials and its dependency to temperature and loading path. Three types of material tests were done. The first one is dynamic simple shear test with several loading frequencies and temperatures. The second one is tensile and compressive test of a thin rubber sheet, which is adhered to plates in upper and lower plane, in order to investigate relation between volumetric deformation and hydro-static pressure of the rubber. The third one is static tensile test. In the test, uniaxial and equi-biaxial tensile test were carried out under quasi-static loading at the room temperture. Then, we applied those experimental data to the hyper-elastic visco-plastic damage model, which had been proposed by us. As a result, it is found that the model can well reproduce the experimental data.
|
Academic Significance and Societal Importance of the Research Achievements |
ゴム材料は,幅広い分野で工業部材として応用されており,部材の精度の高い性能予測が期待されている.本研究では,熱粘弾塑性-ダメージモデルなどの複雑な構成則を用いることを前提に,ゴムの上述した依存性を体系的に把握するための試験装置を開発し,ゴムの力学特性の速度,最大変形,温度等に対する依存性を把握した.さらに,研究代表者らが既往の研究で提案した超弾性‐粘弾塑性ダメージモデルを適用したところ,実験結果を比較的精度良く再現できることがわかった.今後は,本研究で得られた実験データやモデルを用いた数値解析により,ゴムを応用した構造部材の精緻な力学特性の予測が可能になるものと期待している.
|
Report
(4 results)
Research Products
(7 results)