• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of digital mammography diagnostic support system

Research Project

Project/Area Number 16K10266
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Radiation science
Research InstitutionTohoku University

Principal Investigator

Ishibashi Tadashi  東北大学, 医学系研究科, 名誉教授 (40151401)

Co-Investigator(Kenkyū-buntansha) 本間 経康  東北大学, 医学系研究科, 教授 (30282023)
森 菜緒子  東北大学, 大学病院, 助教 (90535064)
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2016: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywordsデジタルマンモグラフィ / 乳房画像診断
Outline of Final Research Achievements

Mammographic breast cancer screening is a cost-effective way to improve survival. However, diagnostic accuracy greatly varies depending on experience of the doctor. CAD using AI technology is attracting attention as a diagnostic support method for doctors. We constructed a database of over 20,000 normal breast and cancer cases and succeeded in developing CAD using deep learning. We made a diagnostic workstation equipped with this software, and confirmed that the detection rate of calcified lesions and mass lesions was superior to existing CAD. At the same time, we developed a report management support software that can accurately measure breast tissue and calculate breast cancer risk factors from past medical history and family history, with a view to future personalized medicine.

Academic Significance and Societal Importance of the Research Achievements

日本のマンモグラフィ検診では精度管理のために医師2名による読影を義務化している。医師の負担増、経費増などで日本では検診率が低く、目標に達していない。精度の悪い検診では要精査率を高めてしまい、医療機関での精密検査などの医療費負担増も問題となっている。そのためにも経験豊富な専門医と同等のCADの開発、普及が社会的ニーズとなっている。近年の深層学習法を用いたAICADに新たに期待されるようになってきた。我々が開発したCAD搭載の読影支援システムは、既存のCADより優れた感度、特異度を有し、これらの社会的ニーズの答えることができると思われる。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (4 results)

All 2018 2017 2015

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Patent(Industrial Property Rights) (1 results) (of which Overseas: 1 results)

  • [Journal Article] 乳がん病変検出のための深層学習を用いた計算機支援画像診断システム2018

    • Author(s)
      鈴木 真太郎
    • Journal Title

      計測自動制御学会論文集

      Volume: -

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Classification of Mammographic Masses by Deep Learning2017

    • Author(s)
      Zhang X, Sasaki T, Suzuki S, Takane Y, Kawasumi Y, Ishibashi T, Homma N, Yoshizawa M
    • Journal Title

      SICE Annual Conference 2017

      Volume: 1 Pages: 1-4

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Evaluating clinical implications of 15-mega-sub-pixel liquid-crystal display in phase contrast mammography2015

    • Author(s)
      Takane Y, Kawasumu Y, Sato M, Horie T, Ishibashi T.
    • Journal Title

      Breast Cancer

      Volume: April Issue: 4 Pages: 1-7

    • DOI

      10.1007/s12282-015-0603-1

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Patent(Industrial Property Rights)] 乳房画像病変検出システム2017

    • Inventor(s)
      本間経康、半田岳志,石橋忠司
    • Industrial Property Rights Holder
      東北大学
    • Industrial Property Rights Type
      特許
    • Filing Date
      2017
    • Acquisition Date
      2017
    • Related Report
      2017 Research-status Report
    • Overseas

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi