Study of Painleve equations by the field theory
Project/Area Number |
16K13765
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Basic analysis
|
Research Institution | Nagasaki University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | パンルベ方程式 / Euler-Lagrange 方程式 / Lagrangian / 行列型パンルベ方程式 / Painleve 方程式 / 行列型Panleve方程式 / 場の方程式 / 岡本変換群 / 可積分系 / 場の理論 |
Outline of Final Research Achievements |
In order to investigate Painleve equation P_J's systematically, we set the main goal to clarify the structure of transformation groups of solutions and classical solutions of Matrix Painleve System M(*)'s which are group symmetric Anti-Self-Dual Yang-Mills equations, where P_J and M(*) are transformed to each other. The initial plan to treat this problem has not gone well, and so we could not go further plans. But, by another approach, we have got another useful results to solve the main goal. (1) We proved that Painleve equations are themselves Euler-Lagrange equations and got Lagrangian L_J of P_J. (2) We got the strict formula of transformation between P_6 and M(1,1,1,1). This formula has been the only unknown formula between P_J and M(*).(1) will develop into the new study of Painleve equation from the dynamical system point of view. (2) will connect to the solution of the main goal.
|
Academic Significance and Societal Importance of the Research Achievements |
パンルベ方程式は、新しい超越関数を発見しようという純粋に数学的関心のもと、1900年~1910年に発見された6つの複素常微分方程式である。その後、1980年代から2010年代にかけ、パンルベ方程式と物理的方程式との関係が次々に発見され、現在では、物理学へのより進んだ応用が期待されている。今回の研究成果は、パンルベ方程式そのものが物理的枠組みの中で把握できることを明確にしたものであり、また、パンルベ方程式の構造を詳細に解明するための手がかりとなるものである。その意味でパンルベ方程式研究の現在の期待に沿うものである。
|
Report
(5 results)
Research Products
(1 results)