Project/Area Number |
16K16227
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Design and evaluation of sustainable and environmental conscious system
|
Research Institution | Shinshu University |
Principal Investigator |
Myo Than Htay 信州大学, 学術研究院工学系, 助教 (20590516)
|
Research Collaborator |
HASHIMOTO Yoshio
SATO Unkai
RODOLFO Cruz Silva
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 電解水電池 / 中和反応 / 酸性電解水 / 塩基性電解水 / 太陽光エネルギー / Water Battery / Electrolyzed-water / Solar energy / 炭素複合膜 / 光化学電池 / 電解水 / 再生可能エネルギー |
Outline of Final Research Achievements |
This research experimentally indicates the potential of extracting the electrical energy from neutralization reaction of the acidic and basic electrolyzed water, and a fundamental structure of light assisted Electrolyzed-water battery is established. The output voltage of the battery is depending on the difference of the concentration of hydrogen ions between the acidic and basic electrolyzed-water. A maximum output voltage of about 0.6 V (equivalent to about 72% of theoretical value) is realized in our prototype unit cell. We observed that it is possible to adjust the output current of the cell by either controlling the structure of the composite separator-film located between the two electrolyzed water or altering the intensity of light irradiated on it. The formation of highly resistive neutralized water is a major obstacle that cause decaying of the output characteristic as the neutralization reaction proceeds.
|
Academic Significance and Societal Importance of the Research Achievements |
【学術的な意義】本研究で確立させた電解水中和電池の起電力及び出力電流の依存パラメータの一部を解明できたことによって、今後のデバイス設計に必要な基礎情報として期待できる。 【社会的な意義】本研究で確立させた電解水中和電池は、消耗資源として海水(水)と太陽光のみを用いており、高効率デバイス機構の構築に成功した場合、持続可能な低環境負荷発電仕組みとして期待できる。
|