Method of cell quiescence using hydrogel with high modulus and cell adhesion
Project/Area Number |
16K16414
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Medical systems
|
Research Institution | Tokyo Metropolitan Industrial Technology Research Institute |
Principal Investigator |
Ohyabu Yoshimi 地方独立行政法人東京都立産業技術研究センター, 開発本部開発第二部バイオ応用技術グループ, 主任研究員 (80587410)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 休眠化 / ゼラチン / 弾性率 / 細胞接着性 / 包埋 / ゼラチンゲル / 細胞治療 / 細胞の休眠化 / 高弾性 / 高弾性率 / 3次元包埋 / 細胞接着 |
Outline of Final Research Achievements |
This study had demonstrated that cells encapslating in hydrogel with high modulus and cell adhesion at room temperature were induced quiescence and revealed factors that lead to quiescence. Furthermore, similar quiescence had been also observed in mesenchymal stem cells. Previous studies have reported that skin fibroblast sheets embedded in hard gelatin gels at room temperature did not change their shape for a week, and they were transferred to culture again with retention of high viability. In this study, the gel-encapslated cells have not induced to the resting period, but their migration and proliferation have been suppressed to become quiescence. After attaching the cells to a hard gel with an elastic modulus of more than 300 Pa, it has been found to be reversibly quiescence when placed in an environment around room temperure. The results would expect to create a safe short-term cell preservation system.
|
Academic Significance and Societal Importance of the Research Achievements |
再生医工学では,細胞侵襲性を有する凍結保存技術が伝統的に利用され、数十年ほとんど革新されていない。組織工学の飛躍的な進歩により、細胞足場の力学や生化学的特性が接着依存性細胞のlineageを制御することが明らかにされた。 本研究は、細胞工学と生体材料学の協働により、“安全かつ確実な細胞保存方法の確立”という再生医工学のかねてからの課題を解決した。さらに、細胞・組織・器官の保存という生命工学の普遍的課題にも重要な示唆を与え得る。
|
Report
(4 results)
Research Products
(7 results)