• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Developing a robust method to model misspecification in longitudinal data analysis: Applications for educational and developmental psychology.

Research Project

Project/Area Number 16K17305
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Educational psychology
Research InstitutionThe University of Tokyo (2017-2018)
University of Tsukuba (2016)

Principal Investigator

Usami Satoshi  東京大学, 高大接続研究開発センター, 准教授 (20735394)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords縦断データ / 分類 / 因果推論 / 発達 / 成長 / 回帰木 / 決定木 / 潜在成長モデル / クロスラグモデル / 構造方程式モデル決定木 / 交差遅延モデル / 縦断データ分析 / モデルの誤設定
Outline of Final Research Achievements

Longitudinal design is useful because it enables researchers to effectively evaluate the trajectories of growths/changes in individuals and its individual differences. In this research project, we have proceeded the following research and published papers: (1) proposing a new statistical model that can account for time-specific effects, (2) proposing a unified framework to clarify the conceptual and mathematical relations among cross-lagged models to evaluate longitudinal associations between variables, (3) evaluating the performance of classification of individuals in SEM Trees through large scale simulation study, and (4) applying proposed methods to data in educational and developmental psychology.

Academic Significance and Societal Importance of the Research Achievements

縦断データは仮説検証上の利点が多いことから,心理学,経済学・教育学・社会学・医学等多様な分野から注目を集めている.縦断データを分析するための方法論として,潜在成長モデル,クロスラグモデル,SEMTreeと呼ばれる手法等がこれまで広く利用されてきた.本研究は,実際の縦断データ分析においてその影響が生じる可能性が非常に高いにも拘わらず世界的に見ても検証が不十分であった,モデルの誤設定の問題に焦点を当てている.実践性が高い縦断データ分析手法における方法論的な問題を検証する本申請課題の遂行は,従来の理論・応用研究の双方に大きなインパクトを与えるものである.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (17 results)

All 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (5 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 5 results,  Open Access: 3 results,  Acknowledgement Compliant: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results) Remarks (3 results)

  • [Int'l Joint Research] レディング大学(英国)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] ユトレヒト大学(オランダ)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] ノートルダム大学/フロリダ国際大学(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] A unified framework of longitudinal models to examine reciprocal relations2019

    • Author(s)
      Usami,S., Murayama,K., & Hamaker,E.L. (in press).
    • Journal Title

      Psychological Methods

      Volume: 24 Issue: 5 Pages: 637-657

    • DOI

      10.1037/met0000210

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Cross-lagged panel model in medical research: A cautionary note.2019

    • Author(s)
      Usami,S., Todo,N., & Murayama,K.
    • Journal Title

      PLOS ONE

      Volume: preprint

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Time-specific errors in growth curve modeling: Type-1 error inflation and a possible solution with mixed-effects models.2018

    • Author(s)
      Usami,S., & Murayama,K.
    • Journal Title

      Multivariate Behavioral Research

      Volume: 53 Issue: 6 Pages: 876-897

    • DOI

      10.1080/00273171.2018.1504273

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Performance of latent growth model based structural equation model trees to uncover population heterogenity in growth trajectories.2018

    • Author(s)
      Usami, S., Jacobucci, R., & Hayes, T.
    • Journal Title

      Computational Statistics

      Volume: 33

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Fitting structural equation model trees and latent growth curve mixture models in longitudinal designs: The influence of model misspecification in estimating the number of classes2017

    • Author(s)
      Usami, S., Hayes, T., McArdle, J.J.
    • Journal Title

      Structural Equation Modeling

      Volume: 24 Issue: 4 Pages: 585-598

    • DOI

      10.1080/10705511.2016.1266267

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] On the mathematical and conceptual relationship between cross-lagged longitudinal models.2018

    • Author(s)
      Usami, S., Murayama, K., & Hamaker, E.L.
    • Organizer
      行動計量学会第46回大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Random time errors in growth curve model.2018

    • Author(s)
      Usami, S., Murayama, K. (2018).
    • Organizer
      83rd Annual Meeting of Psychometric Society
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Unified Framework of Cross-Lagged Models.2018

    • Author(s)
      Usami, S.
    • Organizer
      Talk at University of Notre Dame.
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] A Unified Framework of Cross-Lagged Longitudinal Models.2017

    • Author(s)
      Usami, S., Murayama, K., Hamaker, E.L.
    • Organizer
      Annual Meeting of Psychometric Society.
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Unified Framework of Cross-Lagged Longitudinal Models.2017

    • Author(s)
      Usami, S., Murayama, K., Hamaker, E.L.
    • Organizer
      統計関連学会連合大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Random Time Errors in Growth Curve Modeling.2017

    • Author(s)
      Usami, S. Murayama, K.
    • Organizer
      行動計量学会第45回大会
    • Related Report
      2017 Research-status Report
  • [Remarks]

    • URL

      http://satoshiusami.com/index.html

    • Related Report
      2018 Annual Research Report
  • [Remarks]

    • URL

      http://satoshiusami.com/index.html

    • Related Report
      2017 Research-status Report
  • [Remarks] 宇佐美研究室のホームページ

    • URL

      http://satoshiusami.com/index.html

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi