• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Diophantine problems related to polynomial-exponential equations

Research Project

Project/Area Number 16K17557
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionGunma University

Principal Investigator

Miyazaki Takafumi  群馬大学, 大学院理工学府, 准教授 (20706725)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords指数型不定方程式 / Jesmanowicz予想 / ディオファントスの組 / 連立ペル方程式 / Bakerの手法 / ベキ剰余理論 / 単数方程式 / 寺井予想 / 線形回帰数列 / Ramanujan-Nagell 方程式 / 連立ぺル方程式
Outline of Final Research Achievements

First, I studied a ternary Diophantine equation expressing that a sum of two powers is equal to a power. In particular, I considered not only the case where each of the base numbers on the equation is fixed, but also the case where one of the three terms is a square and the base numbers of the other terms are fixed. On the former case, I verified the conjecture of Jesmanowicz to be true and had some results on other related unsolved problems. On the latter one, I had some results on Ramanujan-Nagell type equations having very particular conditions on its parameters.
Second, I studied the sets of natural numbers with the property that the product of any two elements in the set increased 1 is a perfect square, so called Diophantine tuples. As joint works of Y.Fujita and M.Cipu, I showed that any given Diophantine triple can only be extended to a Diophantine quadruple (in some sense) at most 8 ways.

Academic Significance and Societal Importance of the Research Achievements

フェルマーの方程式に類似する項数の少ない不定方程式について研究を行った。特に、方程式の各項が累乗数で与えられる場合を扱い、より具体的には、三項型の指数型方程式やRamanujan-Nagell型方程式、さらには二つの特別な線形回帰数列の一致の決定問題に帰着される連立ペル方程式等について考察を行った。これらの研究の多くは、今日の整数論の発展に多大な影響を与えたフェルマーの最終定理の一般化問題「一般型フェルマー予想」に連なる、あるいは深く関わっている。この様な意味で、これらの研究は、整数論のさらなる発展に寄与するものと考えられる。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (17 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (10 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 10 results,  Open Access: 4 results,  Acknowledgement Compliant: 3 results) Presentation (4 results) (of which Int'l Joint Research: 4 results) Remarks (1 results)

  • [Int'l Joint Research] デブレッツェン大学(ハンガリー)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] ルーマニアアカデミー数学研究所(ルーマニア)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Application of cubic residue theory to an exponential equation concerning Eisenstein triples2020

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie

      Volume: 62(110) Pages: 305-312

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On Terai's exponential equation with two finite integer parameters2019

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Notes Number Theory Discrete Mathematics

      Volume: 25 Issue: 1 Pages: 84-107

    • DOI

      10.7546/nntdm.2019.25.1.84-107

    • NAID

      120006861274

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Coincidence between two binary recurrent sequences of polynomials arising from Diophantine triples2019

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A study on the exponential Diophantine equation a^x+(a+b)^y=b^z2019

    • Author(s)
      Takafumi Miyazaki, Nobuhiro Terai
    • Journal Title

      Publicationes Mathematicae Debrecen

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the Diophantine equation ((c+1)m^2+1)^x+(cm^2-1)^y=(am)^z2018

    • Author(s)
      E. Kizildere, T. Miyazaki, G. Gokhan
    • Journal Title

      Turkish Journal of Mathematics

      Volume: 42 Issue: 5 Pages: 2690-2698

    • DOI

      10.3906/mat-1803-14

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Contributions to some conjectures on a ternary exponential Diophantine equation2018

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      Acta Arithmetica

      Volume: 186.1 Issue: 1 Pages: 1-36

    • DOI

      10.4064/aa8656-2-2018

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the number of extensions of a Diophantine triple2018

    • Author(s)
      Mihai Cipu, Yasutsugu Fujita, Takafumi Miyazaki
    • Journal Title

      International Journal of Number Theory

      Volume: 14 Issue: 03 Pages: 899-917

    • DOI

      10.1142/s1793042118500549

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The regularity of Diophantine quadruples2017

    • Author(s)
      Yasutsugu Fujita, Takafumi Miyazaki
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 印刷中 Issue: 6 Pages: 3803-3831

    • DOI

      10.1090/tran/7069

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] A polynomial-exponential equation related to the Ramanujan-Nagell equation,2017

    • Author(s)
      Takafumi Miyazaki
    • Journal Title

      The Ramanujan Journal

      Volume: 印刷中 Issue: 3 Pages: 601-613

    • DOI

      10.1007/s11139-016-9878-x

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On the diophantine equation 1+x^a+z^b=y^n2016

    • Author(s)
      Attila Berczes, Lajos Hajdu, Takafumi Miyazaki, Istvan Pink
    • Journal Title

      Journal of Number Theory and Combinatorics

      Volume: 8 Pages: 145-154

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Application of cubic residue theory to a special type of unit equation concerning Eisenstein triples2019

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Diophantine Analysis and Related Fields 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Coincidence between two sequences of polynomials arising from Diophantine triples2018

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Conference on Diophantine m-tuples and Related Problems II
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] On Terai’s exponential equation with two finite integer parameters2018

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Analytic Number Theory and Related Areas
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Extension of Dem’janenko’s classical work on a quadratic Diophantine equation and its applications2017

    • Author(s)
      Takafumi Miyazaki
    • Organizer
      Diophantine Analysis and Related Fields 2017
    • Place of Presentation
      日本大学(東京都・千代田区)
    • Year and Date
      2017-01-09
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Remarks]

    • URL

      http://www.sci.st.gunma-u.ac.jp/staff_page/sci_miyazaki.htm

    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi