• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Relations of finite multiple polylogarithms and finite multiple zeta values

Research Project

Project/Area Number 16K17583
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionOsaka Institute of Technology

Principal Investigator

Kamano Ken  大阪工業大学, ロボティクス&デザイン工学部, 准教授 (50409611)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords多重ゼータ値 / 多重ベルヌーイ数 / 有限多重ゼータ値 / 数論
Outline of Final Research Achievements

By using the shuffle relation of finite multiple zeta values, new relations of finite multiple zeta values are obtained . As a special case, this relation gives a certain weighted sum formula for finite multiple zeta values.
A generating function of the number of Lonesum decomposable matrices is explicitly given, and its properties in modulo primes p are also given.
Matiyasevich type formula, which is a convolution formula, for poly-Bernoulli numbers and polynomials are obtained.

Academic Significance and Societal Importance of the Research Achievements

証明した有限多重ゼータ値の公式は,有限多重ゼータ値が興味深い代数的構造を持つことを示しており,有限多重ゼータ値の今後のさらなる研究の進展に期待できる.
ロンサム分解可能行列は組合せ論的な対象であり,代数的・解析的な側面の多い多重ゼータ値の分野において,新しい見方を提供した.
多重ベルヌーイ数は多重ゼータ値と関係が深く,自明には得られない畳み込み関係式を今回得たことにより,多重ベルヌーイ数がとても素性のよいものであることが示された.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Invited: 2 results)

  • [Journal Article] Matiyasevich type identities for hypergeometric Bernoulli polynomials and poly-Bernoulli polynomials2019

    • Author(s)
      Ken Kamano
    • Journal Title

      Moscow Journal of Combinatorics and Number Theory

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Lonesum decomposable matrices2018

    • Author(s)
      Kamano Ken
    • Journal Title

      Discrete Mathematics

      Volume: 341 Issue: 2 Pages: 341-349

    • DOI

      10.1016/j.disc.2017.09.002

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] ロンサム分解可能行列について2017

    • Author(s)
      鎌野健
    • Organizer
      第34回代数的組合せ論シンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] ロンサム行列とロンサム分解可能行列2017

    • Author(s)
      鎌野健
    • Organizer
      関西多重ゼータ研究会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 有限多重ゼータ値の重みつき和公式2016

    • Author(s)
      鎌野健
    • Organizer
      西早稲田数論セミナー兼PVセミナー
    • Place of Presentation
      早稲田大学 早稲田キャンパス
    • Year and Date
      2016-06-04
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi