• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Handle decompositions and smooth structures of 4-manifolds

Research Project

Project/Area Number 16K17593
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionOsaka University (2017-2018)
Hiroshima University (2016)

Principal Investigator

YASUI Kouichi  大阪大学, 情報科学研究科, 准教授 (70547009)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsトポロジー / 4次元多様体 / 微分構造 / ハンドル分解 / コルク / Stein 構造 / 結び目 / Bauer-Furuta 不変量 / ハンドル体 / Stein 多様体 / 4次元多様体 / Stein構造 / 4次元トポロジー / 接触構造
Outline of Final Research Achievements

We studied 4-dimensional topology. Our main achievements are as follows. (1) We showed that, for any positive integer n, there exists a simply connected closed 4-manifold X such that for any compact codimension zero submanifold W with boundary having first Betti number bounded by n, the set of all smooth structures on X cannot be generated from X by twisting W. (2) We showed that every geometrically simply connected positive definite closed 4-manifold with b+>1 has a vanishing Bauer-Furuta invariant. (3) We showed that, under a mild condition on b+ and b-, every geometrically simply connected closed 4-manifold admits no symplectic structure for at least one orientation of the manifold.

Academic Significance and Societal Importance of the Research Achievements

(1) 4次元多様体上の全ての微分構造を構成することは4次元トポロジーにおける重要な問題である.本研究の成果は,部分多様体の貼り直しでは全ての微分構造が得られないことを,適当な条件の下で示している.
(2),(3) 「全ての単連結閉4次元多様体は幾何学的単連結か?」という問題は,微分構造の分類問題と密接に関係する懸案の問題であり,4次元以外の全ての次元で肯定的に解決されている.本研究の成果はこの問題を否定的に解決するためのアプローチを与えている.一方,非常に多くの4次元多様体が幾何学的単連結であるため,これらの成果は単連結閉4次元多様体の非常に広いクラスに対して成立する新しい性質を与えてもいる.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (19 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 3 results,  Acknowledgement Compliant: 1 results) Presentation (13 results) (of which Int'l Joint Research: 5 results,  Invited: 10 results) Funded Workshop (1 results)

  • [Int'l Joint Research] ミネソタ大学(米国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Geometrically simply connected 4-manifolds and stable cohomotopy Seiberg-Witten invariants2020

    • Author(s)
      Kouichi Yasui
    • Journal Title

      Geometry & Topology

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Nonexistence of twists and surgeries generating exotic 4-manifolds2019

    • Author(s)
      Kouichi Yasui
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 印刷中

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On twists and surgeries generating exotic smooth structures2018

    • Author(s)
      Kouichi Yasui
    • Journal Title

      RIMS Kokyuroku

      Volume: 2099 Pages: 30-35

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Journal Article] Calabi-Yau Caps, Uniruled Caps and Symplectic Fillings2017

    • Author(s)
      Tian-Jun Li, Cheuk Yu Mak and Kouichi Yasui
    • Journal Title

      Proceedings of the London Mathematical Society

      Volume: 114 Issue: 1 Pages: 159-187

    • DOI

      10.1112/plms.12007

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Minimal genus functions and smooth structures of 4-manifolds2019

    • Author(s)
      安井弘一
    • Organizer
      微分トポロジー19 ~4次元多様体に埋め込まれた曲面とその手術~
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Minimal genus functions and smooth structures of 4-manifolds2018

    • Author(s)
      Kouichi Yasui
    • Organizer
      Knotted surfaces in 4-manifolds
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Geometrically simply connected 4-manifolds and stable cohomotopy Seiberg-Witten invariants2018

    • Author(s)
      Kouichi Yasui
    • Organizer
      Four Dimensional Topology
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Corks and exotic 4-manifolds represented by framed knots2018

    • Author(s)
      Kouichi Yasui
    • Organizer
      The topology and geometry of low-dimensional manifolds: a celebration of the mathematics of Bob Gompf
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Nonexistence of twists and surgeries generating exotic 4-manifolds2018

    • Author(s)
      安井弘一
    • Organizer
      Intelligence of Low-dimensional Topology
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Nonexistence of twists and surgeries generating exotic 4-manifolds2018

    • Author(s)
      安井弘一
    • Organizer
      九州大学金曜トポロジーセミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 4次元多様体の微分構造とコルク2017

    • Author(s)
      安井弘一
    • Organizer
      大阪大学談話会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Nonexistence of twists and surgeries generating exotic 4-manifolds2017

    • Author(s)
      Kouichi Yasui
    • Organizer
      Low Dimensional Topology and Gauge Theory
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Exotic Stein fillings of contact 3-manifolds2017

    • Author(s)
      Kouichi Yasui
    • Organizer
      The Third Pacific Rim Mathematical Association Congress
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Nonexistence of twists and surgeries generating exotic 4-manifolds2017

    • Author(s)
      安井弘一
    • Organizer
      日本数学会2017年度秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] 4次元シュタイン多様体と結び目2016

    • Author(s)
      安井弘一
    • Organizer
      第63回トポロジーシンポジウム
    • Place of Presentation
      神戸大学
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Contact 5-manifolds and smooth structures on Stein 4-manifolds2016

    • Author(s)
      安井弘一
    • Organizer
      日本数学会2016年度秋季総合分科会
    • Place of Presentation
      関西大学
    • Related Report
      2016 Research-status Report
  • [Presentation] Nonexistence of twists and surgeries generating exotic 4-manifolds2016

    • Author(s)
      安井弘一
    • Organizer
      研究集会「4次元トポロジー」
    • Place of Presentation
      大阪市立大学
    • Related Report
      2016 Research-status Report
  • [Funded Workshop] Four Dimensional Topology2018

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi