• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the Calabi-Yau manifolds and the special Lagrangian submanifolds from the view point of differential geometry

Research Project

Project/Area Number 16K17598
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionKeio University

Principal Investigator

Hattori Kota  慶應義塾大学, 理工学部(矢上), 准教授 (30586087)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords超ケーラー多様体 / 複素構造 / リッチ曲率 / 無限遠点における接錐 / グロモフ・ハウスドルフ収束 / 測度付きグロモフ・ハウスドルフ収束 / ラプラシアンの固有関数 / 幾何学的量子化 / 主束 / 接続ラプラシアン / ヤン・ミルズ接続 / リッチ平坦多様体 / 距離空間 / 漸近錐 / 微分幾何学 / 複素多様体 / カラビ・ヤウ多様体 / 特殊ラグランジュ部分多様体
Outline of Final Research Achievements

In the context of differential geometry, Calabi-Yau manifolds are Ricci-flat Kaehler manifolds with trivial canonical bundle. Moreover, if the manifolds have holomorphic symplectic form, then they are called the hyper-Kaehler manifolds.
It is shown by Colding and Minicozzi that if a complete Ricci-flat manifold with maximal volume growth and one of the tangent cone at infinity has a smooth cross section, then the tangent cone at infinity is unique. We investigate the asymptotic behavior of one of the hyper-Kaehler manifolds constructed by Anderson-Kronheimer-LeBrun, which is known to have the irrational volume growth, then show that the moduli space of the tangent cones at infinity of it is homeomorphic to the circle.

Academic Significance and Societal Importance of the Research Achievements

カラビ・ヤウ多様体の中でも特に超ケーラー多様体は美しい性質を持つ一方で、コンパクトな場合は具体例の構成をすることすら難しいほど珍しい多様体である。しかしながら、非コンパクトな場合は豊富に例を構成する手法がいくつか知られており、様々な性質をもつ超ケーラー多様体の存在が期待される。本研究課題によって、非コンパクトな超ケーラー多様体は、極めて多彩な漸近挙動を示しうることが証明された。この結果によって、非コンパクトなリッチ平坦多様体に関する研究は極めてワイルドな幾何学と結びつく可能性が期待される。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (16 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (14 results) (of which Int'l Joint Research: 5 results,  Invited: 11 results)

  • [Journal Article] On the Taub-NUT type hyper-Kaehler metrics on the Hilbert schemes of n points on C^22017

    • Author(s)
      Kota Hattori
    • Journal Title

      Differential Geometry and its Applications

      Volume: 53 Pages: 76-96

    • DOI

      10.1016/j.difgeo.2017.04.008

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds2017

    • Author(s)
      Kota Hattori
    • Journal Title

      Geometry & Topology

      Volume: 21, no. 5 Issue: 5 Pages: 2683-2723

    • DOI

      10.2140/gt.2017.21.2683

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] ベクトル束上のラプラシアンの固有値の連続性について2019

    • Author(s)
      服部広大
    • Organizer
      東北大学 幾何と解析セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 幾何学的量子化と測度付きグロモフ・ハウスドルフ収束について2019

    • Author(s)
      服部広大
    • Organizer
      第66回 幾何学シンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] ベクトル束上のラプラシアンの固有値の連続性について2019

    • Author(s)
      服部広大
    • Organizer
      日本数学会年会
    • Related Report
      2018 Research-status Report
  • [Presentation] On the moduli spaces of tangent cones at infinity of Ricci-flat manifolds2018

    • Author(s)
      服部広大
    • Organizer
      The 2nd Symposium in Geometry and Differential Equations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 超ケーラー多様体に埋め込まれたコンパクト特殊ラグランジュ部分多様体2018

    • Author(s)
      服部広大
    • Organizer
      大阪大学幾何学セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 幾何学的量子化と測度付きグロモフ・ハウスドルフ収束2018

    • Author(s)
      服部広大
    • Organizer
      Year-End workshop on geometry, topology and related topics in Kagoshima
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] ある完備リッチ平坦多様体の漸近錐のモジュライ空間について2017

    • Author(s)
      服部広大
    • Organizer
      日本数学会2017年度年会
    • Place of Presentation
      首都大学東京(東京都・八王子市)
    • Year and Date
      2017-03-24
    • Related Report
      2016 Research-status Report
  • [Presentation] The nonuniqueness of the tangent cone at infinity of Ricci-flat manifolds2017

    • Author(s)
      Kota Hattori
    • Organizer
      18-th UK-Japan winter school in Mathematics
    • Place of Presentation
      London (United Kingdom)
    • Year and Date
      2017-01-06
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] リッチ平坦多様体の無限遠点における接錐の非一意性について2017

    • Author(s)
      服部広大
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] The nonuniqueness of tangent cones at infinity of Ricci flat manifolds2017

    • Author(s)
      Kota Hattori
    • Organizer
      Boston-Keio Workshop 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] リッチ平坦多様体の無限遠点における接錐のモジュライ空間について2017

    • Author(s)
      服部広大
    • Organizer
      2017年度福岡大学微分幾何研究集会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] The nonuniqueness of the tangent cone at infinity of Ricci-flat manifolds2016

    • Author(s)
      Kota Hattori
    • Organizer
      The First Japan-Taiwan Joint Conference on Differential Geometry & the 8th TIMS-OCAMI-WASEDA Joint International Workshop on Differential Geometry and Geometric Analysis
    • Place of Presentation
      早稲田大学(東京都・新宿区)
    • Year and Date
      2016-12-13
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] リッチ平坦多様体の漸近錐について2016

    • Author(s)
      服部広大
    • Organizer
      多様体上の微分方程式
    • Place of Presentation
      金沢大学サテライトプラザ(石川県・金沢市)
    • Year and Date
      2016-11-17
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] New examples of compact special Lagrangian submanifolds embedded in hyper-Kaehler manifolds2016

    • Author(s)
      Kota Hattori
    • Organizer
      Quaternionic Differential Geometry and its Related Topics
    • Place of Presentation
      お茶の水女子大学(東京都・文京区)
    • Year and Date
      2016-09-08
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi