• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Reformulation and generalization of knot invariants using quandles

Research Project

Project/Area Number 16K17600
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionSophia University

Principal Investigator

Oshiro Kanako  上智大学, 理工学部, 准教授 (90609091)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsカンドル / シャドウバイカンドル / local biquandle / カンドル表示 / カンドルコサイクル不変量 / アレクサンダー不変量 / 捩れアレクサンダー不変量 / quandle / biquandle / Twisted derivative / Alexander invariant / Knot / Link / Spatial graph / Dehn coloring / アレキサンダー不変量 / Fox微分 / 5-move / バイカンドル / アレキサンダー多項式 / 結び目 / 絡み目 / ハンドル体結び目 / ハンドル体絡み目 / 仮想結び目 / 仮想絡み目 / 捩れアレキサンダー不変量 / up-down 彩色 / bracket / 曲面絡み目
Outline of Final Research Achievements

First, we introduced and studied a new family of knot invariants that includes twisted Alexander invariants and quandle cocycle invariants. We also introduced a generalization of the notion of Fox calculus, which gives a knot invariant obtaind from quandle presentations of knot quandles. This study was given with the cooperation of Atsushi Ishii in University of Tsukuba. Second, we gave an interpretation of knot-theoretic ternary-quasigroup theory (which is a theory corresponding to region colorings of knot diagrams) by using local biquandles. This implies that knot-theoretic ternary-quasigroup theory can be interpreted similary as biqandle theory which is well-known. This study was given with the cooperations of Natsumi Oyamaguchi in Shumei University and Sam Nelson in Claremont McKenna College. Futhermore, we gave a relationship between shadow biquandle theory and knot-theoretic ternary-quasigroup theory.
The obtaiend results was announced in some conferences or in research papers.

Academic Significance and Societal Importance of the Research Achievements

カンドル代数を用いた様々な結び目不変量の再定式化を考えることで, 不変量の計算の単純化および, 一般化による強力な不変量の構成が期待できる.
本研究では, 捩れアレキサンダー不変量やカンドルコサイクル不変量, knot-theoretic ternary-quasigroup理論のカンドル代数を用いた再定式化を与えた. 特に, 捩れアレキサンダー不変量の再定式化の応用として, 結び目の5-move同値性の判定方法を与えた. このように, 既存結び目不変量の再定式化や一般化によって, 研究の幅や手段が広がり, 今後も新たな具体的計算例や応用例が発見されることが期待される.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (33 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (4 results) Journal Article (8 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 8 results,  Open Access: 3 results) Presentation (19 results) (of which Int'l Joint Research: 6 results,  Invited: 15 results) Remarks (2 results)

  • [Int'l Joint Research] Claremont McKenna College(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Pusan National University(韓国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Claremont McKenna College(米国)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] 釜山大学校(韓国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Shadow biquandles and local biquandles2020

    • Author(s)
      Kanako Oshiro
    • Journal Title

      Topology Appl.

      Volume: 271 Pages: 107041-107041

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Local biquandles and Niebrzydowski's tribracket theory2019

    • Author(s)
      Sam Nelson, Kanako Oshiro, Natsumi Oyamaguchi
    • Journal Title

      Topology Appl.

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A multiple conjugation biquandle and handlebody-links2018

    • Author(s)
      Atsushi Ishii, Masahide Iwakiri, Seiichi Kamada, Jieon Kim, Shosaku Matsuzaki, Kanako Oshiro
    • Journal Title

      Hiroshima Math. J.

      Volume: 48

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Biquandle (co)homology and handlebody-links2018

    • Author(s)
      Atsushi Ishii, Masahide Iwakiri, Seiichi Kamada, Jieon Kim, Shosaku Matsuzaki, Kanako Oshiro
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 27

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Biquandle Virtual Brackets2018

    • Author(s)
      Sam Nelson, Kanako Oshiro, Ayaka Shimizu, Yoshiro Yaguchi,
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A multiple conjugation biquandle and handlebody-links2018

    • Author(s)
      Atsushi Ishii, Masahide Iwakiri, Seiichi Kamada, Jieon Kim, Shosaku Matsuzaki, Kanako Oshiro
    • Journal Title

      Hiroshima math. J.

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Up-down colorings of virtual-link diagrams and the necessity of Reidemeister moves of type II2017

    • Author(s)
      Kanako Oshiro, Ayaka Shimizu, Yoshiro Yaguchi
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 26 Pages: 1750073-1750073

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] On calculations of the twisted Alexander ideals for spatial graphs, handlebody-knots and surface-links2017

    • Author(s)
      Atsushi Ishii, Ryo Nikkuni, Kanako Oshiro
    • Journal Title

      Osaka J. Math.

      Volume: 印刷中

    • NAID

      120006478934

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Knot-theoretic ternary-quasigroups, local biquandles, and shadow biquandles2019

    • Author(s)
      大城佳奈子
    • Organizer
      筑波大学トポロジーセミナー, 筑波大学
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Knot-theoretic ternary quasigroup theory and shadow biquandle theory2019

    • Author(s)
      大城佳奈子
    • Organizer
      Friday Seminar on Knot Theory, 大阪市立大学
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Knot-theoretic ternary-quasigroups, local biquandles, and shadow biquandles2019

    • Author(s)
      大城佳奈子
    • Organizer
      東京女子大学トポロジーセミナー, 東京女子大学
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Knot-theoretic ternary quasigroup theory and shadow biquandle theory for oriented surface-knots2019

    • Author(s)
      Kanako Oshiro
    • Organizer
      Unifying 4-Dimensional Knot Theory, The Banff Centre, Alberta, Canada
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Quandle homology theory and quandle cocycle invariants of links2019

    • Author(s)
      大城佳奈子
    • Organizer
      研究集会「カンドルと対称空間」,大阪市立大学
    • Related Report
      2019 Annual Research Report
  • [Presentation] Shadow biquandles and local biquandles2019

    • Author(s)
      大城佳奈子
    • Organizer
      日本数学会2019年度年会, 東京工業大学
    • Related Report
      2018 Research-status Report
  • [Presentation] Calculations of twisted Alexander invariants using $f$-derivatives for quandles2019

    • Author(s)
      Kanako Oshiro
    • Organizer
      Meeting #1147: Spring Central and Western Joint Sectional Meeting, Hawaii(米国)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Link invariants obtained from augmented Alexander matrices2018

    • Author(s)
      Kanako Oshiro
    • Organizer
      Meeting #1137: AMS Spring Western Sectional Meeting, Portland State University, Oregon(米国)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Augmented Alexander matrices and link invariants2018

    • Author(s)
      大城佳奈子
    • Organizer
      上智大学数学談話会, 上智大学
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Augmented Alexander matrices and generalizations of twisted Alexander invariants and quandle cocycle invariants I2018

    • Author(s)
      大城佳奈子
    • Organizer
      農工大セミナー, 東京農工大学
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Local biquandles and region colorings of link diagrams2018

    • Author(s)
      大城佳奈子
    • Organizer
      Quandles and Symmetric Spaces, 大阪市立大学
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Augmented Alexander matrices and generalizations of twisted Alexander invariants and quandle cocycle invariants2017

    • Author(s)
      Kanako Oshiro
    • Organizer
      Meeting #1128: AMS Spring Western Sectional Meeting, Washington State University, Pullman (米国)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Augmented Alexander matrices and generalizations of twisted Alexander invariants and quandle cocycle invariants2017

    • Author(s)
      Kanako Oshiro
    • Organizer
      2017 KIAS Research Station Busan Self-distributive system and quandle (co)homology theory in algebra and low-dimensional topology, Kolon Seacloud Hotel (韓国)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to biquandle theory2017

    • Author(s)
      大城佳奈子
    • Organizer
      研究集会「ハンドル体結び目とその周辺10・Hurwitz action 7」
    • Related Report
      2017 Research-status Report
  • [Presentation] Biquandle (co)homology and handlebody-links2017

    • Author(s)
      大城佳奈子
    • Organizer
      Friday Seminar on Knot Theory, 大阪市立大学
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] G-families of quandles, their homology theory and cocycle invarians of handlebody-knots2017

    • Author(s)
      Kanako Oshiro
    • Organizer
      Meeting #1135: Joint Mathematics Meetings, San Diego Convention Center, California(米国)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Up-down colorings of virtual-link diagrams and the necessity of Reidemeister moves of type II2017

    • Author(s)
      大城佳奈子
    • Organizer
      茨城工業高等専門学校数学セミナー
    • Place of Presentation
      茨城工業高等専門学校(茨城県・ひたちなか市)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Symmetric quandle cocycle invariants for oriented links2016

    • Author(s)
      大城佳奈子
    • Organizer
      上智大学数学談話会
    • Place of Presentation
      上智大学(東京都・千代田区)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Up-down colorings of virtual-link diagrams and RII-detectors2016

    • Author(s)
      Kanako Oshiro
    • Organizer
      Claremont Topology Seminar
    • Place of Presentation
      Pomona College (USA)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Remarks] Kanako Oshiro's Homepage

    • URL

      http://pweb.sophia.ac.jp/oshirok/research.htm

    • Related Report
      2019 Annual Research Report
  • [Remarks] Kanako Oshiro's Homepage

    • URL

      http://pweb.sophia.ac.jp/oshirok/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi