Robust and Efficient Solutions of Large Sparse Constrained Eigenproblems
Project/Area Number |
16K17639
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | University of Tsukuba |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 固有値問題 / 周回積分 / 線形方程式 / 数値計算アルゴリズム / 疎行列 / 数値線形代数 / 最適化 / 次元削減 / 数理工学 / 前処理 / 数値解析 / アルゴリズム |
Outline of Final Research Achievements |
For incompletely formulated problems due to difficulty in modeling complicated phenomenon and missing and contaminated data due to measurement errors, previous techniques can heuristically interpret the property of the solution only afterward and cannot intentionally select and extract the solution of interest. To overcome this problem, the purpose of this project is to develop methodologies to incorporate known physical constraints appropriately and prior information on the unknown, cope with increasing demands, becoming more multifaceted and complicated in the future, and enable the acquisition of knowledge with mathematical support. This project focus on the development of robust and efficient numerical methods for constrained eigenvalue problems.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の意義は、実際的な工学、社会科学および産業にあらわれる問題の頑健な求解を可能にすることにある。こうした現場における需要は、今後ますます複雑・多様化し、モデル設計が困難なシミュレーションが多くなることが想定される。また、波及効果として、他分野における数値計算の基盤となるこうした数値解析を支え、今後の発展を促進させることがある。
|
Report
(6 results)
Research Products
(70 results)