• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a multi-scale data assimilation method based on huge ensemble data assimilation

Research Project

Project/Area Number 16K17806
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Meteorology/Physical oceanography/Hydrology
Research InstitutionJapan, Meteorological Research Institute (2017-2019)
Institute of Physical and Chemical Research (2016)

Principal Investigator

Kondo Keiichi  気象庁気象研究所, 気象観測研究部, 研究官 (00735558)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords気象予報 / 数値予報 / データ同化 / マルチスケール同化 / アンサンブルカルマンフィルタ / 粒子フィルタ / 非正規性 / マルチスケールデータ同化手法 / マルチスケール / 衛星観測 / 鉛直局所化 / 鉛直誤差相関 / 気象学 / 計算科学 / 統計数理
Outline of Final Research Achievements

In this study, to improve forecasts of severe phenomena with the non-Gaussian PDF due to strong nonlinear systems like tropical storms or heavy rainfall, a multi-scale data assimilation method has been developed using an ensemble Kalman filter (EnKF) and a particle filter (PF). The particle filter is applied to the smallest scale on the multi-scale methods. The hybrid system with the EnKF and PF outperforms the traditional EnKF with the intermediate atmospheric general circulation model, especially, for the severe phenomena with the non-Gaussian distribution of background error.

Academic Significance and Societal Importance of the Research Achievements

本研究では粒子フィルタにマルチスケールデータ手法を応用することにより、安定に動作しつつ従来手法を上回る解析精度を実現する同化手法を確立することができた。従来、大気モデルは膨大な自由度を持ち、粒子フィルタを適用することは困難であろうと考えられてきたため、本研究で得られた成果は学術的に非常に意義が大きい。さらに非線形性が卓越するような領域(例えば低気圧等の擾乱のある領域)で粒子フィルタの効果により解析精度が大きく向上することを確認しており、将来的には大きな災害をもたらすとされる集中豪雨や台風等の顕著現象の予測に対する効果が期待される。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (29 results)

All 2020 2019 2018 2017 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results,  Acknowledgement Compliant: 1 results) Presentation (26 results) (of which Int'l Joint Research: 17 results,  Invited: 1 results)

  • [Journal Article] Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model2019

    • Author(s)
      Kondo Keiichi、Miyoshi Takemasa
    • Journal Title

      Nonlinear Processes in Geophysics

      Volume: 26 Issue: 3 Pages: 211-225

    • DOI

      10.5194/npg-26-211-2019

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Choosing the Optimal Numerical Precision for Data Assimilation in the Presence of Model Error2018

    • Author(s)
      Hatfield Sam、Duben Peter、Chantry Matthew、Kondo Keiichi、Miyoshi Takemasa、Palmer Tim
    • Journal Title

      Journal of Advances in Modeling Earth Systems

      Volume: 10 Issue: 9 Pages: 2177-2191

    • DOI

      10.1029/2018ms001341

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Impact of Removing Covariance Localization in an Ensemble Kalman Filter: Experiments with 10 240 Members Using an Intermediate AGCM2016

    • Author(s)
      Keiichi Kondo, Takemasa Miyoshi
    • Journal Title

      Monthly Weather Review

      Volume: 144 Issue: 12 Pages: 4849-4865

    • DOI

      10.1175/mwr-d-15-0388.1

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] Local Particle Filter Implemented with Minor Modifications to the LETKF Code2020

    • Author(s)
      T. Miyoshi, S. Kotsuki, K. Kondo, R. Potthast
    • Organizer
      米国気象学会年次会合
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] モデルが不完全な場合における背景誤差相関について2019

    • Author(s)
      近藤圭一
    • Organizer
      日本気象学会2019年度春季大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 背景誤差の非ガウス分布を考慮したアンサンブル同化手法2019

    • Author(s)
      近藤圭一、三好建正
    • Organizer
      日本気象学会2019年度秋季大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Non-Gaussian statistics in global atmospheric dynamics with a 10240-member ensemble Kalman filter experiment using an intermediate AGCM2019

    • Author(s)
      Kondo, K., T. Miyoshi
    • Organizer
      米国地球物理学連合秋季大会(AGU 2019 Fall meeting)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Local Particle Filter Implemented with Minor Modifications to the LETKF Code2019

    • Author(s)
      T. Miyoshi, S. Kotsuki, K. Kondo, R. Potthast
    • Organizer
      米国地球物理学連合秋季大会(AGU 2019 Fall meeting)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Large ensemble based data assimilation with MASINGAR-mk22018

    • Author(s)
      Keiichi KONDO, Taichu Y. TANAKA, Tsuyoshi T. SEKIYAMA, Keiya YUMIMOTO, Takashi MAKI
    • Organizer
      エーロゾル予測のための国際協力(ICAP)第10回ワーキンググループ会合
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 誤差分布の非ガウス性を考慮したデータ同化手法2018

    • Author(s)
      近藤圭一、三好建正
    • Organizer
      日本気象学会2018秋季大会
    • Related Report
      2018 Research-status Report
  • [Presentation] A large ensemble based data assimilation experiment with a global aerosol transport model2018

    • Author(s)
      Keiichi KONDO, Taichu Y. TANAKA, Tsuyoshi T. SEKIYAMA, Keiya YUMIMOTO, Takashi MAKI
    • Organizer
      14th iCACGP Quadrennial Symposium/15th IGAC Science Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] A large ensemble based data assimilation experiment with the coupled global atmosphere and aerosol transport models2018

    • Author(s)
      Keiichi KONDO, Taichu Y. TANAKA, Tsuyoshi T. SEKIYAMA, Keiya YUMIMOTO, Takashi MAKI
    • Organizer
      2018 American Geophysical Union Fall Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Assimilating satellite radiances without vertical localization using the Local Ensemble Transform Kalman Filter with up to 1280 ensemble members2017

    • Author(s)
      Keiichi Kondo, Koji Terasaki and Takemasa Miyoshi
    • Organizer
      European Geosciences Union General Assembly 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Assimilating satellite radiances without vertical localization using the Local Ensemble Transform Kalman Filter with up to 1280 ensemble members2017

    • Author(s)
      Keiichi Kondo, Koji Terasaki and Takemasa Miyoshi
    • Organizer
      Japan Geoscience Union Meeting 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Multi-scale localization with NICAM-LETKF using real observations2017

    • Author(s)
      Keiichi Kondo and Takemasa Miyoshi
    • Organizer
      Japan Geoscience Union Meeting 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] アンサンブルデータ同化における鉛直誤差相関の調査2017

    • Author(s)
      近藤圭一、寺崎康児、三好建正
    • Organizer
      日本気象学会春季大会
    • Related Report
      2017 Research-status Report
  • [Presentation] NICAM-LETKFを用いたマルチスケールデータ同化2017

    • Author(s)
      近藤圭一、三好建正
    • Organizer
      日本気象学会春季大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Exploring localization for multiscale dynamics and satellite radiances: experiments with real observations using the global nonhydrostatic atmospheric model NICAM2017

    • Author(s)
      Keiichi Kondo and Takemasa Miyoshi
    • Organizer
      WMO Symposium on Data Assimilation
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Non-Gaussianity in the atmospheric dynamics revealed with a 10240-member ensemble Kalman filter2017

    • Author(s)
      Keiichi Kondo and Takemasa Miyoshi
    • Organizer
      WMO Symposium on Data Assimilation
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] NICAM-LETKFを用いたDual localization法の検証2017

    • Author(s)
      近藤圭一、三好建正
    • Organizer
      日本気象学会秋季大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Assimilating satellite radiances without vertical localization using the Local Ensemble Transform Kalman Filter with up to 1280 ensemble members2017

    • Author(s)
      Keiichi Kondo, Koji Terasaki and Takemasa Miyoshi
    • Organizer
      American Meteorological Society Annual Meeting
    • Place of Presentation
      Seattle (USA)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Assimilating satellite radiances without vertical localization using the Local Ensemble Transform Kalman Filter with up to 1280 ensemble members2017

    • Author(s)
      Keiichi Kondo, Koji Terasaki and Takemasa Miyoshi
    • Organizer
      7th AICS international symposium
    • Place of Presentation
      神戸大学(兵庫県神戸市)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Assimilating satellite radiances without vertical localization using the Local Ensemble Transform Kalman Filter with up to 1280 ensemble members2017

    • Author(s)
      Keiichi Kondo, Koji Terasaki and Takemasa Miyoshi
    • Organizer
      RIKEN International Symposium on Data Assimilation
    • Place of Presentation
      理研計算科学研究機構(兵庫県神戸市)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 大規模アンサンブルデータ同化実験に基づいた大気の非ガウス性とその影響2017

    • Author(s)
      近藤圭一,三好建正
    • Organizer
      第6回 理研・京大合同データ同化研究会
    • Place of Presentation
      理研計算科学研究機構(兵庫県神戸市)
    • Related Report
      2016 Research-status Report
  • [Presentation] 10240メンバーのアンサンブルデータ同化実験に基づいた大気の非ガウス性の調査2016

    • Author(s)
      近藤圭一,三好建正
    • Organizer
      日本気象学会2016年度春季大会
    • Place of Presentation
      国立オリンピック記念青少年総合センター(東京都渋谷区)
    • Related Report
      2016 Research-status Report
  • [Presentation] Non-Gaussian statistics and data assimilation in the global atmospheric dynamics with 10240-member ensemble Kalman filter2016

    • Author(s)
      Keiichi Kondo, Takemasa Miyoshi
    • Organizer
      Japan Geoscience Union Meeting 2016
    • Place of Presentation
      幕張メッセ(千葉県千葉市)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Non-Gaussian statistics and data assimilation in the global atmospheric dynamics with 10240-member ensemble Kalman filter2016

    • Author(s)
      Keiichi Kondo, Takemasa Miyosh
    • Organizer
      The 7th EnKF Data Assimilation Workshop
    • Place of Presentation
      Pennsylvania (USA)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Non-Gaussian statistics and data assimilation in the global atmospheric dynamics with 10240-member ensemble Kalman filter2016

    • Author(s)
      Keiichi Kondo, Takemasa Miyosh
    • Organizer
      THE 5TH ANNUAL INTERNATIONAL SYMPOSIUM ON DATA ASSIMILATION
    • Place of Presentation
      University of Reading (UK)
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 10240メンバーアンサンブルデータ同化 による局所化の解析誤差への影響2016

    • Author(s)
      近藤圭一,三好建正
    • Organizer
      日本気象学会2016年度秋季大会
    • Place of Presentation
      名古屋大学(愛知県名古屋市)
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi