Development of composite electrode for oxide-based solid-state battery using imapact consolidation phenomenon(Fostering Joint International Research)
Project/Area Number |
16KK0127
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
|
Allocation Type | Multi-year Fund |
Research Field |
Power engineering/Power conversion/Electric machinery
|
Research Institution | Toyohashi University of Technology |
Principal Investigator |
Inada Ryoji 豊橋技術科学大学, 工学(系)研究科(研究院), 准教授 (30345954)
|
Project Period (FY) |
2017 – 2019
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥15,080,000 (Direct Cost: ¥11,600,000、Indirect Cost: ¥3,480,000)
|
Keywords | 衝撃固化現象 / エアロゾルデポジション法 / 全固体電池 / 酸化物固体電解質 / 電極活物質 / コンポジット電極 |
Outline of Final Research Achievements |
Aerosol deposition (AD) is known as a functional thick film fabrication process via impact consolidation phenomenon of ceramic particles at room temperature. Using this process, we tried to fabricate thick film electrodes composed of high capacity electrode active materials for advanced Li-ion batteries. The electrical and electrochemical properties of the obtained film electrodes were evaluated in cooperation with research partners of University of Michigan and University of Calgary. It was confirmed that each film electrode formed on a metal substrate showed good charge / discharge characteristics in an organic liquid electrolyte. Based on these results, we attempted direct electrode formation on an oxide solid electrolyte sheet without any heat treatment. Reversible charge / discharge operation could be confirmed even in all-solid-state cells in which Li metal as counter electrode was pressed against the mold end surface of electrode / solid electrolyte laminates.
|
Academic Significance and Societal Importance of the Research Achievements |
全固体電池は高い安全性を備えた次世代型蓄電デバイスに位置づけられているが,その安定動作には,電極内ならびに電極-固体電解質界面における電荷移動抵抗低減が必須である。本研究により,エアロゾルデポジション法を使用することで,次世代型二次電池用酸化物系・合金系電極活物質を熱アシストなしで酸化物固体電解質上に常温固化して得られた膜電極にて,可逆性の高い充放電が可能であることを実証した。更に,評価の際に必須となるLi金属対極と固体電解質間の電荷移動抵抗低減に資する多くの知見を得ることもできた。これらの成果は,化学的安定性に優れるが可塑性の低い酸化物系材料を利用した全固体電池の実現に貢献するものである。
|
Report
(2 results)
Research Products
(12 results)