• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Properties of Weakly Closed Itemsets and their Application to Knowledge Discovery

Research Project

Project/Area Number 17H01788
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionKyoto University

Principal Investigator

Yamamoto Akihiro  京都大学, 情報学研究科, 教授 (30230535)

Co-Investigator(Kenkyū-buntansha) 小林 靖明  京都大学, 情報学研究科, 助教 (60735083)
久保山 哲二  学習院大学, 付置研究所, 教授 (80302660)
Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥14,820,000 (Direct Cost: ¥11,400,000、Indirect Cost: ¥3,420,000)
Fiscal Year 2019: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Keywords知識発見 / 2項関係 / 閉集合 / 弱閉集合 / データマイニング / 形式概念解析 / 双クラスタリング
Outline of Final Research Achievements

In this research, in order to admit noise in closed sets in a binary relation between two discrete-valued attributes, we formulated weakly closed sets using set theory and constructed an algorithm for enumerating weakly closed sets. We defined weakly closed sets based on the fact that closed sets can be interpreted using graphs. We designed an algorithm for enumerating weakly closed sets with modifying the well-known fast enumeration algorithm for closed sets. Furthermore, by modifying the definition of weakly closed sets and the enumeration algorithm to the trajectory data collected from travelers, we succeeded in enumerating the routes frequently followed by them as weakly closed sets. We also showed that the fixpoint semantics of closed sets cannot be given to weakly closed sets in general.

Academic Significance and Societal Importance of the Research Achievements

2つの離散値属性間の2項関係における閉集合は,知識発見における意味を持つだけでなく,数学的な性質を数多く持ち,しかも高速な列挙方法が開発されるなど,知識発見において重要な概念である.しかし,ノイズを全く認めないことが実用上の障害となることもあった.そこで,閉集合に対してノイズを許容する方法が必要であるが,離散値属性を扱う際にノイズを数量的に定義することは適切とは限らない.そこで,弱閉集合をグラフ理論を範にして集合論を用いて定式化した上で,弱閉集合を列挙するためのアルゴリズムを構築した.実応用として,旅行者の経路を集めた実データから旅行者がよく辿る経路を弱閉集合として列挙することに成功した.

Report

(4 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (14 results)

All 2021 2020 2019 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 2 results) Presentation (10 results) (of which Int'l Joint Research: 1 results) Funded Workshop (1 results)

  • [Journal Article] Mining Disjoint Sequential Pattern Pairs from Tourist Trajectory Data2020

    • Author(s)
      Siqi Peng and Akihiro Yamamoto
    • Journal Title

      Lecture Notes in Artificial Intelligence

      Volume: 12323 Pages: 645-648

    • DOI

      10.1007/978-3-030-61527-7_42

    • ISBN
      9783030615260, 9783030615277
    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Extending Various Thesauri by Finding Synonym Sets from a Formal Concept Lattice2017

    • Author(s)
      Madori Ikeda and Akihiro Yamamoto
    • Journal Title

      Journal of Natural Language Processing

      Volume: 24 Issue: 3 Pages: 323-349

    • DOI

      10.5715/jnlp.24.323

    • NAID

      130006078496

    • ISSN
      1340-7619, 2185-8314
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An improved fixed-parameter algorithm for one-page crossing minimization2017

    • Author(s)
      Yasuaki Kobayahsi, Hiromu Ohtsuka, Hisao Tamaki:
    • Journal Title

      LIPICS

      Volume: 89

    • Related Report
      2017 Annual Research Report
  • [Presentation] Applying ZBDD for Triadic Concept Analysis2021

    • Author(s)
      Siqi Peng and Akihiro Yamamoto
    • Organizer
      人工知能学会 第116回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 消失イデアルのGroebner基底を計算するFarr-Gao のアルゴリズムの機械学習としての性質2021

    • Author(s)
      日野 遼人, 山本 章博
    • Organizer
      人工知能学会 第115回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Mining Dijoint Sequential Pattern Pairs from Tourist Trajectory Data.2020

    • Author(s)
      Siqi Peng and Akihiro Yamamoto
    • Organizer
      23rd International Conference on Discovery Science
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Introduction of Triadic Concept Analysis and Its Possible Improvement2020

    • Author(s)
      Siqi Peng and Akihiro Yamamoto
    • Organizer
      人工知能学会 第114回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 可換マッチング問題の固定パラメーター容易性に関する研究2020

    • Author(s)
      久保田 稜,小島 健介,小林 靖明,○山本 章博
    • Organizer
      人工知能学会 第112回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2019 Annual Research Report
  • [Presentation] Improvement of sequential pattern mining based on (k,l)-frequency and generative probability2020

    • Author(s)
      Siqi Peng and Akihiro Yamamoto
    • Organizer
      人工知能学会 第111回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 二部グラフにおける(k,l)-Plexのための形式概念解析の拡張2019

    • Author(s)
      小島 健介,呉 可天
    • Organizer
      第108回人工知能基本問題研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 文字列データの線形最小汎化問題に対するアルゴリズム2019

    • Author(s)
      里見 琢聞, 小林 靖明, 山本 章博
    • Organizer
      第109回人工知能基本問題研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] ドライブデータからの運転手間の相違を表す属性のDTWによる発見2018

    • Author(s)
      江良 佳朗, 山本 章博, 熊田 孝恒
    • Organizer
      人工知能学会人工知能基本問題研究会(第106回)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 整数計画法による木構造データ間のアラインメント距離の計算2018

    • Author(s)
      久保田稜,小林靖明,山本章博
    • Organizer
      人工知能学会人工知能基本問題研究会(第106回)
    • Related Report
      2017 Annual Research Report
  • [Funded Workshop] The 20th International Conference on Discovery Science (DS 2017)2017

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi