• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quantitative Analysis and Application of Curriculum Using a Large Amount of Automatically Collected Syllabus Information

Research Project

Project/Area Number 17H01837
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Learning support system
Research InstitutionThe University of Tokyo

Principal Investigator

Sekiya Takayuki  東京大学, 情報基盤センター, 助教 (70323508)

Co-Investigator(Kenkyū-buntansha) 松田 源立  成蹊大学, 理工学部, 准教授 (40433700)
山口 和紀  東京大学, 大学院総合文化研究科, 教授 (80158097)
Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥10,270,000 (Direct Cost: ¥7,900,000、Indirect Cost: ¥2,370,000)
Fiscal Year 2019: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2018: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Keywordsシラバス / ウェブクローラ / 機械学習 / カリキュラム / 計算機科学 / クローリング / ウェブクローリング / クローラ
Outline of Final Research Achievements

This study aims to understand the characteristics and trends of the curriculum without any subjective elements through a quantitative analysis. In order to realize the goal, we obtained a large amount of syllabus information, and categorized them into the following three types: Link Type, which is a collection of links to syllabus web pages; Whole Type, which is a collection of multiple syllabus information; and Database Type, which gathers and provides syllabus information offered by educational institution. Then, we developed a syllabus collection support system which consists of a decision tool using a decision model by the SVM for each classification, a syllabus crawler that searches for pages that are strongly related to the syllabus based on keywords via the Google Search API and combines it with a complementary generic crawler, and a database which holds the web pages and their meta-information, and analysis results by the decision tool.

Academic Significance and Societal Importance of the Research Achievements

高等教育機関のカリキュラムを客観的な基準で分析するためには、その内容を端的に表すシラバスを大量に集めて分析することが望ましい。しかし、その分析のためには多大な労力を要する。本研究では、シラバスの提供形態の分類と、それに合わせたシラバスの判定から得られた知見に基づく、シラバス収集支援システムを開発したことで、今後大量のシラバスを効率的に集める一助となる。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (7 results)

All 2019 2018 2017

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 3 results) Presentation (1 results)

  • [Journal Article] Investigation on University Websites for Semi-automated Syllabus Crawling2019

    • Author(s)
      Sekiya Takayuki、Matsuda Yoshitatsu、Yamaguchi Kazunori
    • Journal Title

      IEEE Frontiers in Education Conference (FIE)

      Volume: 1 Pages: 1-7

    • DOI

      10.1109/fie43999.2019.9028479

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Compact and Robust Models for Japanese-English Character-level Machine Translation2019

    • Author(s)
      Dai Jinan、Yamaguchi Kazunori
    • Journal Title

      Proceedings of the 6th Workshop on Asian Translation

      Volume: 1 Pages: 36-44

    • DOI

      10.18653/v1/d19-5202

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Curriculum Analysis of Computer Science Departments by Simplified, Supervised LDA2018

    • Author(s)
      Matsuda Yoshitatsu、Sekiya Takayuki、Yamaguchi Kazunori
    • Journal Title

      Journal of Information Processing

      Volume: 26 Issue: 0 Pages: 497-508

    • DOI

      10.2197/ipsjjip.26.497

    • NAID

      130007397263

    • ISSN
      1882-6652
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Unifying Objective Function of Independent Component Analysis for Ordering Sources by Non-Gaussianity2018

    • Author(s)
      Matsuda Yoshitatsu、Yamaguchi Kazunori
    • Journal Title

      IEEE Transactions on Neural Networks and Learning Systems

      Volume: 29 Issue: 11 Pages: 5630-5642

    • DOI

      10.1109/tnnls.2018.2806959

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Discovery of Interconnection Among Knowledge Areas of Standard Computer Science Curricula by a Data Science Approach2017

    • Author(s)
      Matsuda Yoshitatsu、Sekiya Takayuki、Yamaguchi Kazunori
    • Journal Title

      Neural Information Processing

      Volume: 10638 Pages: 186-195

    • DOI

      10.1007/978-3-319-70139-4_19

    • ISBN
      9783319701387, 9783319701394
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A web-based curriculum engineering tool for investigating syllabi in topic space of standard computer science curricula2017

    • Author(s)
      Sekiya Takayuki、Matsuda Yoshitatsu、Yamaguchi Kazunori
    • Journal Title

      2017 IEEE Frontiers in Education Conference (FIE), Indianapolis, IN, USA

      Volume: 00 Pages: 1-9

    • DOI

      10.1109/fie.2017.8190598

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] 適応的独立成分分析によるノイズ除去と特徴抽出2017

    • Author(s)
      松田源立
    • Organizer
      第20回情報論的学習理論ワークショップ, 2017.11.8~11, 東京大学 本郷キャンパス
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi