• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theory of automorphic forms and quadratic forms

Research Project

Project/Area Number 17H02834
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Ikeda Tamotsu  京都大学, 理学研究科, 教授 (20211716)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2019: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2017: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Keywords保型形式 / 二次形式 / エルミート形式 / 保形形式 / 保型表現 / 保型的L関数 / 退化Whittaker関数 / Gross-Keating不変量 / 保型的L関数 / 退化Whittaka関数 / ジーゲル級数
Outline of Final Research Achievements

The Siegel series is an important invariant appearing in the Fourier coefficients of the Siegel-Eisenstein series. In this research, we study the Gross-Keating invariants of quadratic forms and their refinement, namely the extended Gross-Keating data, and give an explicit formula for the Siegel series. As applications, we also gave lifting of Hilbert-Siegel modular forms and evaluation of the Fourier coefficients of Eisenstein series. We also studied the Gross-Keating invariants for Hermite forms.

Academic Significance and Societal Importance of the Research Achievements

整数論において,保型形式,とくにヘッケ作用素の同時固有形式の不変量を調べることは重要な課題である.筆者の過去の研究では一変数のヘッケ同時固有形式から高次のジーゲル保型形式へのリフティングが存在することを示したが,このリフティングはまたヘッケ同時固有形式となる.
本研究ではリフティングの研究で重要な役割を果たしたジーゲル級数を詳細に研究した.ジーゲル級数が二次形式のグロス・キーティング不変量とその精密化である拡大グロス・キーティングデータを用いて表すことができることを示し,その明示的公式を与えた.また,応用としてヒルベルトジーゲル級数のリフティングを与え,そのフーリエ級数の評価なども与えた.

Report

(6 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (14 results)

All 2023 2021 2020 2018 2017

All Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results) Presentation (8 results) (of which Int'l Joint Research: 5 results,  Invited: 2 results) Funded Workshop (2 results)

  • [Journal Article] Estimates for the Fourier coefficients of the Duke-Imamoglu-Ikeda lift2023

    • Author(s)
      Tamotsu Ikeda and Hidenori Katsurada
    • Journal Title

      Forum Math.

      Volume: - Issue: 4 Pages: 975-990

    • DOI

      10.1515/forum-2022-0197

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An inductive formula of the Gross-Keating invariant of a quadratic form2023

    • Author(s)
      Sungmun Cho, Tamotsu Ikeda, Hidenori Katsurada, Chul-hee Lee and Takuya Yamauchi
    • Journal Title

      Tohoku Mathematical Journal

      Volume: -

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms2020

    • Author(s)
      Ikeda, Tamotsu; Yamana, Shunsuke
    • Journal Title

      Annales Scientifiques de l'Ecole Normale Superieure

      Volume: 53 Issue: 5 Pages: 1121-1181

    • DOI

      10.24033/asens.2442

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Gross-Keating invariant of a quadratic form over a non-archimedean local field2018

    • Author(s)
      T. Ikeda and H. Katsurada
    • Journal Title

      Amer. J. Math.

      Volume: 140 Issue: 6 Pages: 1521-1565

    • DOI

      10.1353/ajm.2018.0046

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] On the theory of the liftings2023

    • Author(s)
      Tamotsu Ikeda
    • Organizer
      保型形式と数論
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] An explicit formula for the Siegel series2018

    • Author(s)
      T. Ikeda
    • Organizer
      Representation theory of reductive Lie groups and algebras
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Hilbert-Siegel modular forms on adele groups2018

    • Author(s)
      T. Ikeda
    • Organizer
      21st autumn workshop on number theory
    • Related Report
      2018 Annual Research Report
  • [Presentation] Algebraic automorphic forms and Hilbert-Siegel modular forms2018

    • Author(s)
      T. Ikeda
    • Organizer
      21st autumn workshop on number theory
    • Related Report
      2018 Annual Research Report
  • [Presentation] Gross-Keating invariants of Hermitian forms2018

    • Author(s)
      T. Ikeda
    • Organizer
      Pan Asia Number Theory Conference 2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] On the Gross-Keating invariant for hermitian forms2018

    • Author(s)
      池田保・桂田英典
    • Organizer
      保型形式の解析的・数論的研究
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On the Gross-Keating invariant of a quadratic form and its application to Siegel series2017

    • Author(s)
      Tamotsu Ikeda
    • Organizer
      Automorphic forms and related topics
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On the Gross-Keating invariant of a quadratic form and its applicationto Siegel series2017

    • Author(s)
      Tamotsu Ikeda
    • Organizer
      Special values of automorphic L-functions, periods of automorphic forms and related topics
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Funded Workshop] アジア地域における数論研究(Pan Asian Number Thoery Conference)2021

    • Related Report
      2020 Annual Research Report
  • [Funded Workshop] 21st Autumn Workshop on Number Theory2018

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi