Synaptic platform for neuromorphic computing developed by functional defect engineering in memristive devices
Project/Area Number |
17H03236
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Electronic materials/Electric materials
|
Research Institution | Osaka University |
Principal Investigator |
Sakai Akira 大阪大学, 基礎工学研究科, 教授 (20314031)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥18,590,000 (Direct Cost: ¥14,300,000、Indirect Cost: ¥4,290,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥15,730,000 (Direct Cost: ¥12,100,000、Indirect Cost: ¥3,630,000)
|
Keywords | メモリスタ / シナプス / 金属酸化物結晶 / 酸素空孔 / 転位 / エピタキシャル薄膜 / パルスレーザー蒸着 / 走査透過電子顕微鏡 / 酸化物 / 薄膜 / レーザー蒸着 / 透過電子顕微鏡 / 酸化物結晶 |
Outline of Final Research Achievements |
A brain-inspired computer consisting of artificial synapses is inevitable for next generation high speed and low power consumption computing. In this research, we focus on functional defects, such as oxygen vacancies and dislocations, in crystalline metal-oxide memristive materials. On the basis of designing atomic and electronic structures of the defects and improving conventional memristive device architectures into multi-terminal configurations, we develop resistive switching memory devices with highly ordered two-dimensional dislocation networks, demonstrate synaptic functions of four terminal memristive devices, and elucidate electronic structures of resistance change regions in the devices. The obtained outcomes allow us to reach the realization of the synaptic platform where the artificial synapses can exert high order neuromorphic functions similarly to living synapses in brains.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、より多機能・高性能な脳型コンピュータを実現するために、メモリスタ結晶素子における酸素空孔や転位等の格子欠陥に着目し、4端子構造をベースにしたシナプティックプラットフォームを創製した。高配向2次元転位網の形成や酸素空孔分布の2次元面内制御を通して、酸化物メモリスタ結晶の抵抗変化に関わる転位の影響や、酸素空孔のドリフト機構と電子構造の相関等、学術的に意義深い物理学的知見が獲得された。また、本研究で提唱した4端子構造は、シナプスの自己回帰的な重み操作等、今後、より高度なニューラルネットワークをハードウェア的に実現していくうえで、産業戦略的にも意義深い。
|
Report
(4 results)
Research Products
(20 results)