• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of the NMF based on an action history and questionnaire mixed data for exploratory understanding of a relationship between buying behavior and consumer mind

Research Project

Project/Area Number 17H06779
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Commerce
Research InstitutionKyoto University

Principal Investigator

Abe Hiroyasu  京都大学, 医学研究科, 助教 (40807963)

Project Period (FY) 2017-08-25 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords探索的データ解析 / 非負値行列因子分解 / ウェブ閲覧履歴 / デモグラフィック属性 / 計算時間 / 購買行動 / 心理 / 商学 / 統計学 / 探索的データ分析
Outline of Final Research Achievements

In this study, we developed the new exploratory data analysis method for understanding of a relationship between buying behavior and consumer attribute or mind using action history data, such as buying history or web access, and questionnaire mixed data. The new method is an expansion of the matrix decomposition method that is called nonnegative matrix factorization. We can obtain by the new method some action patterns and characteristics of the some users that did not act according to the patterns. We apply the new method to the real web access log data with user attribute information in a certain shopping website and we confirmed that the new method has potential to get the interpretation as expected. For example, we can grasp a potential needs and identify some users who may not have the potential needs.

Academic Significance and Societal Importance of the Research Achievements

全ての要素が0以上の値であるようなデータと,質問紙データを組み合わせた汎用性のあるデータ解析手法を開発したことは,学術的意義があると自負する.一方で,本研究の社会的意義としては,より繊細なマーケティング施策を行うための材料を提供できる点にあると考える.開発手法は,行動パターンによって記述されるユーザセグメントを抽出しつつ,そのセグメントが示すパターン通りに行動をしない特異ユーザも抽出できる.このことは,ウェブページ推薦といった潜在ニーズを掘り起こすための施策において,抽出パターンに沿った施策を十把一絡げに行うのではなく,その特異ユーザに対しては柔軟に対応できることにつながる.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Annual Research Report
  • Research Products

    (10 results)

All 2019 2018 2017 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results) Remarks (3 results)

  • [Journal Article] Orthogonal nonnegative matrix tri-factorization based on Tweedie distributions2018

    • Author(s)
      Abe Hiroyasu、Yadohisa Hiroshi
    • Journal Title

      Advances in Data Analysis and Classification

      Volume: 0 Issue: 4 Pages: 1-29

    • DOI

      10.1007/s11634-018-0348-8

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Zero-Inflated Negative Binomial Matrix Factorization2019

    • Author(s)
      Hiroyasu Abe
    • Organizer
      European Conference on Data Analysis (ECDA) 2019
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ベイズ推定に基づく零過剰負の二項分布行列分解2019

    • Author(s)
      阿部寛康
    • Organizer
      統計数理研究所共同利用に係る合同研究集会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Nonnegative matrix factorization on zero-inflated Poisson with concomitant variables2018

    • Author(s)
      Hiroyasu Abe
    • Organizer
      The conference of Data Science, Statistics & Visualisation (DSSV 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 零過剰負の二項分布に基づく非負値行列因子分解について2018

    • Author(s)
      阿部寛康
    • Organizer
      日本計算機統計学会第32回シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 補助変数を用いた零過剰複合ポアソン非負値行列因子分解2018

    • Author(s)
      阿部寛康
    • Organizer
      統計数理研究所共同利用に係る合同研究集会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 補助変数を用いた零過剰ポアソン非負値行列因子分解2017

    • Author(s)
      阿部寛康
    • Organizer
      日本計算機統計学会第31回シンポジウム
    • Related Report
      2017 Annual Research Report
  • [Remarks] Current Research

    • URL

      https://sites.google.com/view/hiroyasuabe/current-research?authuser=0

    • Related Report
      2018 Annual Research Report
  • [Remarks] 研究紹介スライド

    • URL

      https://sites.google.com/view/hiroyasuabe/current-research/%E7%A0%94%E7%A9%B6%E7%B4%B9%E4%BB%8B%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%89?authuser=0

    • Related Report
      2018 Annual Research Report
  • [Remarks] 阿部 寛康 (Abe, Hiroyasu)

    • URL

      https://sites.google.com/view/hiroyasuabe/home?authuser=0

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-08-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi